
CHAM: A Customized Homomorphic Encryption Accelerator
for Fast Matrix-Vector Product

Xuanle Ren∗, Zhaohui Chen∗†, Zhen Gu∗‡, Yanheng Lu∗, Ruiguang Zhong∗, Wen-jie Lu§, Jiansong Zhang∗,
Yichi Zhang∗, Hanghang Wu¶, Xiaofu Zheng¶, Heng Liu∗, Tingqiang Chu¶,

Cheng Hong§, Changzheng Wei¶, Dimin Niu∗and Yuan Xie∗

∗ DAMO Academy, Alibaba Group, China
{xuanle.rxl, chenzhaohui.czh, guzhen.gz, yanheng.lyh, ruiguang.zrg, jiansong.zjs, yichi.zyc, hengliu.lh, dimin.niu, y.xie}@alibaba-inc.com

† Peking University, China ‡ Tsinghua University, China § Ant Group, China {juhou.lwj, vince.hc}@antgroup.com
¶ AntChain, Ant Group, China {hanghang.whh, linke.zxf, chutingqiang.ctq, changzheng.wcz}@antgroup.com

Abstract—Homomorphic encryption (HE) is a promising technique
for privacy-preserving computing because it allows computation on
encrypted data without decryption. HE, however, suffers from poor per-
formance due to enlarged data size and exploded amount of computation.
Related work has been proposed to accelerate HE using GPUs, FPGAs,
and ASICs. The existing work, however, aims at specific HE schemes and
fails to consider the fast-evolving algorithms. For example, HE algorithms
that combine different HE schemes have demonstrated capability of
supporting more types of HE operations and ciphertexts. Moreover,
some existing hardware accelerators target small HE operations (such
as number theoretic transform and key-switch), which however provides
limited or even neglected performance improvement for end-to-end
applications. To better support existing privacy-preserving applications
(e.g., logistic regression and neural network inference), we propose
CHAM, an HE accelerator, for high-performance matrix-vector product,
which can be easily extended to 2-D and 3-D convolutions. Motivated
by the evolution of algorithms, CHAM supports not only traditional HE
operations, but also different types of ciphertexts and the conversion
between them. We implement CHAM with Xilinx FPGAs. The evaluation
demonstrates 1800× speed-up for matrix-vector product, 36× speed-up
for logistic regression, and 144× speed-up for Beaver triple generation
compared to the existing work.

Index Terms—homomorphic encryption, accelerator, matrix-vector
product, logistic regression

I. INTRODUCTION

Privacy-preserving computing is a technique that enables multi-
ple parties to collaboratively learn a shared prediction model with
exchanging minimal amounts of data. This goal can be achieved
using protocols such as secure multi-party computation (MPC) [28]
and federated learning [16]. Among these protocols, homomorphic
encryption (HE), capable of computing on encrypted data, is used
for exchanging data between parties.

Fully homomorphic encryption (FHE) scheme, which is able to
evaluate arbitrary-depth functions, was successfully constructed by
Craig Gentry [15]. Since then, efficient HE schemes based on the
learning-with-errors (LWE) problem and its ring variant (RLWE)
have been proposed due to their simplicity in decryption and arith-
metic features, including Brakerski/Fan-Vercauteren (B/FV) [12],
Cheon-Kim-Kim-Song (CKKS) [8], and fully homomorphic encryp-
tion over the torus (TFHE) [9].

Nevertheless, FHE is considered far from wide application because
of its poor performance. Most mainstream HE schemes suffer from
an explosion of both ciphertext size (×102 to ×105) and computation
(×103 to ×106). For example, inference of an encrypted neural
network consumes 250 seconds [11], [17]. This problem can be miti-
gated using batched processing [3], [8], [12]. For example, up to 4096
encrypted images can be evaluated simultaneously such that the cost
of a single image is amortized [3]. The performance of FHE becomes
even worse when supporting computation with arbitrary depth. More

precisely, a ciphertext, upon encrypted, is associated with a noise
budget that will be consumed during computation. To ensure correct
decryption, this noise budget should not be exhausted, meaning that
only limited-depth computation is allowed. Bootstrapping overcomes
this limitation by refreshing the noise budget before it is about to
exhaust [15]. However, bootstrapping introduces a huge amount of
computation which usually dominates the whole computation [32].

Customized, highly-parallel hardware (e.g., FPGAs, GPUs, and
ASICs) is used for accelerating FHE, especially for bootstrapping.
The FPGA-based approach targets HE operators, such as polynomial
multiplication and number theoretic transform (NTT) [1], [24], [25],
[27], [31], [33]. A representative work accelerates key-switch by
implementing a pipelined architecture on FPGA [31]. However,
accelerating solely key-switch provides limited performance gain
from the perspective of high-level applications. GPUs demonstrate
tens of times of speed-up compared to CPUs [2], [10], [19], [20].
The bottleneck of GPU, however, resides in limited shared memory
that cannot accommodate large polynomials and the intermediate
results during HE evaluation. ASICs achieve tremendous performance
improvement, benefiting from the use of high-frequency clock, high-
bandwidth memory, and dense compute logic [13], [14], [22], [23],
[32]. The chip area of these ASICs, however, is extremely large
(100mm2∼400mm2).

Compared to using bootstrapping, a more practical solution is to
avoid deep homomorphic evaluation by combining HE with other
techniques. For example, inference of an encrypted neural network
can be realized using HE and garbled circuits [21]. In particular,
only linear layers are evaluated homomorphically while the non-linear
layers are handled by garbled circuits. Since linear operations are
usually quite shallow, the encryption parameter required by them is
much smaller than the case where bootstrapping is supported (N =

212 vs. N = 216). With this protocol, inference of ResNet-20 becomes
1000 times faster than the HE-only solutions [3]. More performance
gain can be achieved if implemented with ASICs [30].

Besides the overhead caused by bootstrapping, HE also falls short
of supporting different types of functions. In particular, the commonly
used HE schemes (i.e., B/FV and CKKS) cannot support non-linear
functions efficiently (e.g., activation function in neural networks). A
solution is to approximate these functions using high-order polyno-
mials [17], but it causes an already-trained model to be modified and
even degradation of model accuracy. For example, we observe that
the LeNet-5 has been modified to many homomorphic variants [5],
[11], [17], some of which demonstrate an obvious drop of accuracy.
To address this problem, two groups of novel algorithms have been
proposed. First, the efficiency of HE computation can benefit from
using multiple types of ciphertexts that can be converted to each

20
23

 6
0t

h 
A

C
M

/IE
EE

 D
es

ig
n 

A
ut

om
at

io
n 

C
on

fe
re

nc
e 

(D
A

C
) |

 9
79

-8
-3

50
3-

23
48

-1
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
D

A
C

56
92

9.
20

23
.1

02
47

69
6

Authorized licensed use limited to: North China Electric Power University. Downloaded on November 09,2023 at 15:34:35 UTC from IEEE Xplore.  Restrictions apply. 



other [7]. Second, different HE schemes (i.e., B/FV, CKKS, and
TFHE) may compose a hybrid scheme that supports both linear and
non-linear functions effectively without introducing approximation
error [4], [26]. These new HE algorithms, however, have not been
implemented on FPGA or ASIC.

In this work, we propose CHAM, a Customized Homomorphic
encryption Accelerator for high-performance homomorphic Matrix-
vector product (HMVP), with algorithm-architecture co-design. First,
based on the observation that HE is suitable to and widely used
for computing linear functions, CHAM targets a novel algorithm of
homomorphic MVP. In particular, CHAM supports different types
of ciphertexts (i.e., RLWE and LWE) and the conversion between
them, which demonstrates more flexibility than conventional al-
gorithms. Second, CHAM employs a customized, fully-pipelined
architecture that can effectively utilize parallelism of hardware. For
NTT, we propose a novel, compute-efficient architecture that enables
pipelined data flow without any bubble. CHAM has been deployed
within a privacy-preserving machine solution in one of the top
cloud service providers. To the best of our knowledge, CHAM is
the first HE accelerator deployed for commercial applications. The
evaluation results on benchmarks demonstrate 1800× speed-up for
HMVP, 36× speed-up for logistic regression, and 144× speed-up
for Beaver triple generation compared to existing work. We provide
an open-source release of CHAM (https://github.com/alibaba-damo-
academy/damo ctl cham).

In the rest of this paper, we first provide background for HE in
Section II. Next, we describe the architecture design of CHAM in
Section III and IV. Finally, in Section V, we present implementation
of CHAM and performance evaluation for typical benchmarks.

II. BACKGROUND

A. Notations

This section introduces some basic notations and HE-related ter-
minologies. Raw data in the real world is called cleartext and it is
encoded to the so called plaintext. Moreover, some data should be
protected via encryption, and its plaintext is later encrypted into the
so called ciphertext.

RLWE is an encryption scheme commonly used in HE schemes
(e.g., B/FV and CKKS). In CHAM, the plaintext is encoded as
polynomials and the ciphertext is encrypted as a tuple of two
polynomials, written as (b(X), a(X)). Throughout this paper, the
plaintext encoding the cleartext a is denoted by pt(a), and similarly,
the ciphertext encrypting a is denoted by ct(a).

B. Homomorphic Matrix-Vector Product (HMVP)

In applications like logistic regressions [16] and Beaver triple
generation [28], the computation is mainly composed of multiple
matrix-vector products (MVP). In privacy-preserving applications, the
MVPs are computed homomorphically, namely homomorphic matrix-
vector product (HMVP). In such cases, the matrix A is encoded a set
of plaintexts {pt(Ai)} and the vector v⃗ is encrypted as a ciphertext
ct(v⃗). After computing HMVP, A · v⃗ is encrypted in a new ciphertext
ct(u⃗) as demonstrated in Alg. 1.

C. Dot Products via Polynomial Multiplication

The plaintext encoding the i-th row Ai and the vector v⃗ are

pt
(Ai) = Ai,0 −

N−1∑
j=1

Ai,jX
N−j , pt

(v⃗) =

N−1∑
j=0

v⃗jX
j , (1)

respectively. Then the homomorphic product of pt(Ai) and ctv⃗ is a
ciphertext with its plaintext being

pt
(Ai) × pt

(v⃗)=

N−1∑
j=0

(

N−1−j∑
k=0

Ai,kv⃗k+j −
N−1∑

k=N−j

Ai,kv⃗k+j−N )X j , (2)

whose constant coefficient is actually the inner product of vectors
Ai and v⃗. After computing all the homomorphic products of pt(Ai)

and ct(v⃗), we obtain a set of ciphertexts cti encrypting the inner
products Ai · v⃗ in the constant coefficients of their plaintexts.

D. Packing Encrypted Scalars

For a m-row matrix A, we obtain m ciphertexts rather than
a single ciphertext after HMVP. Only the constant coefficients of
the plaintexts are useful. Hence, unpacking the constant coefficients
from the m ciphertexts and repacking them together into a single
ciphertext is required in CHAM. For the purpose of unpacking and
repacking, we apply the method proposed by Hao Chen et al. [7].
Generally speaking, we extract all the constant coefficients of the
m plaintexts encrypted in ciphertexts, and then cast then as new
ciphertexts, which eventually would be packed in a result ciphertext.
PACKTWOLWES presented in Alg. 2 packs two ciphertexts and
is recursively called to pack multiple ciphertexts by PACKLWES

as shown in Alg. 3. Actually, to pack two ciphertexts ct(i), a
PACKTWOLWES procedure consists of multiplying a monomial,
subtraction, addition, AUTOMORPHISM, and KEYSWITCH with its
input ciphertexts being preprocessed by a procedure EXTRACTL-
WES, which convert ciphertexts ct(i) = (u(i)(X ),v(i)(X )) in the
following manner:

EXTACTLWES(ct(i)) = (u
(i)
0 ,v

(i)
0 −

N−1∑
j=1

v
(i)
j XN−j) (3)

Algorithm 1 Coefficient-encoded matrix-vector product

Input: A matrix A(m×N) := {Ai}i=0,...,m−1 and a vector v⃗
Output: A vector u⃗ = A · v⃗
1: for i← 0 to m− 1 do
2: ct(i) = pt(Ai) × ct(v⃗) ▷ Dot product
3: cti = EXTRACTLWES(ct(i)) ▷ Extract coefficient
4: end for
5: ct(u⃗) = PACKLWES(ct0, ..., ctm−1) ▷ Pack coefficients

Algorithm 2 PACKTWOLWES

Input: An automorphism index l, two RLWE ciphertexts cti =
EXTACTLWES(ct(i)) i ∈ {0, 1}. An index-l Keyswitch key KSKl

Output: An RLWE ciphertext ct
1: ctmono = XN/2 · ct1 ▷ Multiply a monomial
2: (b+(X ),a+(X )) = ct0 + ctmono

3: (b−(X ),a−(X )) = ct0 − ctmono

4: (bA(X ),aA(X )) = (b−(X 2l+1),a−(X 2l+1)) ▷ Automorphism
5: return(b+(X ) + bA(X ),a+(X )) + aA(X ) ·KSKl ▷ KeySwitch

Algorithm 3 PACKLWES

Input: RLWE ciphertexts {cti}2
l−1

i=0
Output: An RLWE ciphertext ct
1: if l = 0 then
2: return ct0
3: else
4: cteven = PACKLWES({ct2i}2

l−1−1
i=0 )

5: ctodd = PACKLWES({ct2i+1}2
l−1−1

i=0 )
6: return PACKTWOLWES(l, {cteven, ctodd})
7: end if

E. Related Work

Besides encoding cleartexts as coefficients of the plaintexts directly
(i.e., coefficient-encoding), we can also encode cleartext using a
single-instruction multiple-data (SIMD) method that can carry out
the same computation over a large number of slots using only one
ciphertext (called batch-encoding). In many HMVP frameworks [21],

Authorized licensed use limited to: North China Electric Power University. Downloaded on November 09,2023 at 15:34:35 UTC from IEEE Xplore.  Restrictions apply. 



a plaintext matrix A is encoded with batching, and it can be directly
rotated and summed up to obtain the result ciphertext. Compared to
batch-encoded HMVP [21], our coefficient-encoded HMVP (Alg. 1)
reduces computation complexity from O(m log2 N) to O(m). When
compared to the diagonal-encoded method proposed in [21] whose
complexity is also O(m), Alg. 1 is still faster because coefficient-
encoding incurs much smaller overhead. Moreover, Alg. 1 can be
extended to other linear functions, such as 2-D and 3-D convolutions
through encoding the original tensors in similar ways [18].
F. Security Model and Parameter Selection

In this work, we adopt a two-party computation model which is
widely adopted in MPC and federated learning. More precisely, party
A owns a share of a vector and party B owns the other share of the
vector as well as a matrix. A encrypts her vector share and sends
it to B. B then combines two vector shares and multiplies it to the
matrix. We assume that B is a semi-honest adversary. In other words,
while B tries to learn as much as possible from the data provided by
A, B honestly follows the prescribed protocol.

The selection of encryption parameters (i.e., polynomial degree N
and moduli qi) is based on the required security level and plaintext
space. In particular, a high security level and/or a large plaintext space
demand large encryption parameters. In this work, we select N =
4096, which is sufficient to support linear homomorphic computation.
This corresponds to a space of 109 bit where 70 bit (corresponding to
two 35 bit moduli) is used for representing plaintext and ciphertext,
while the other 39 bit is used as a special modulus for key-switching.
Thus, a ciphertext consists of four 4096-degree polynomials, while a
plaintext consists of two polynomials. If augmented with the special
modulus, they consists of six and three polynomials, respectively.

III. PROPOSED ARCHITECTURE DESIGN

In this section, we describe the architecture of CHAM and how it
is achieved through searching the design space.
A. Architecture Overview

CHAM aims to accelerate coefficient-encoded matrix-vector prod-
uct described in Alg. 1. As shown in Fig. 1a, CHAM consists of
a number of compute engines, each of which employs a fully-
pipelined architecture1 to improve resource utilization and maximize
throughput. All the polynomials within a plaintext and a ciphertext
are processed in parallel, each corresponding to a functional unit (e.g.,
NTT, MULTPOLY, and INTT).

The DOTPRODUCT module takes augmented plaintext and ci-
phertext as input. The input polynomials are transformed from
coefficient-domain to NTT-domain (stage-1) so the multiplication of
polynomials can be simplified from a convolution to coefficient-
wise multiplication (stage-2). The result is then transformed back
to coefficient-domain (stage-3). The stage-4 rescales the augmented
ciphertext to normal format through dividing the ciphertext by the
39 bit special modulus. The purpose of this stage is to reduce the
noise introduced by polynomial multiplication (from 30 bit to 26 bit).
The EXTRACTLWES module simply extracts the dot-product result
from the RLWE ciphertext and saves it as an LWE ciphertext. It
resides in the same stage with the RESCALE unit (stage-4) because
both of their execution is coefficient-wise over polynomials and
therefore easy to be combined.

The PACKTWOLWES module, corresponding to Alg. 2, packs the
dot-product results (appearing as LWE ciphertexts) to a single RLWE

1The pipeline mentioned here refers to a macro-pipeline, meaning that each
stage of it contains multiple functional units and execution of a stage takes
thousands of clock cycles.

ciphertext (stage-5∼9). Note that the packing procedure in Alg. 3
can be described as a binary tree that takes inputs from the leaf
nodes and outputs the result in the root node. Totally 4095 reductions
are required to pack 4096 ciphertexts since the PACKTWOLWES

module reduces two ciphertexts into one each time. The intermediate
reduction results are stored in a reduce buffer. Once the intermediate
reduction results are ready for the next-level reduction, they preempt
the pipeline and stalls the execution of the preceding stages.
B. Design Space Exploration

According to the roofline model evaluated on the Xilinx U200
FPGA in Fig. 2a, we clearly observe that the compute intensity
of HE operations (e.g., NTT and key-switch) is much smaller
than HMVP. Invoking these HE operations individually will cause
intensive memory access and therefore degrade overall performance.
Thus, in order to achieve the best performance, CHAM adopts a fully-
customized architecture to accelerate HMVP as a whole, instead of
individual HE operations (e.g., NTT and key-switch).

Next, we explore the design space for implementing HMVP,
including 1) how to split the pipeline, 2) how to choose the number of
compute engines, modules and FUs, 3) how to decide the parallelism
of each FU, and 4) the size of buffers. We plot the results in
Fig. 2b with each design choice positioned by its performance
and resource utilization. The optimal choices reside in two points,
i.e., (9-stages, 1×PACKTWOLWES, 6×NTT, 4-PE NTT, 2×compute
engines) and (9-stages, 1×PACKTWOLWES, 6×NTT, 8-PE NTT,
1×compute engine). CHAM corresponds to the first point. Note that
for each design choice in Fig. 2b, we have to ensure that all pipeline
stages have similar latency and throughput in order to maximize the
overall performance. For example, if stage-A involves k-times more
computation than stage-B, then the parallelism of stage-A should be
k-times larger than the parallelism of stage-B (i.e., PA = kPB).
C. Heterogeneous System Design

CHAM is implemented in a heterogeneous system of CPU and
FPGA. We maximize its performance by interleaving computation
and data transfer between the FPGA and the host CPU. Fig. 1b
illustrates how it works in case of different numbers of CPU threads
and CHAM compute engines. On the host-side, we pipeline data
transfer and computation using multiple threads. On the FPGA-side,
we use RAMs to buffer the input and output data of each thread.

A software stack with runtime and driver are developed to support
high-level application. In addition to provide APIs for application,
the runtime also support reliability, availability, and serviceability
(RAS) features including FPGA register loading error handling,
FPGA hang/reset, and FPGA health monitoring.

IV. MICROARCHITECTURE

In this section, we elaborate on the design of FUs, including
number theoretic transform and polynomial processing units.

Algorithm 4 Constant-geometry forward NTT

Input: Polynomial a(X ), twiddle factors ω2N [log2 N ∗N/2].
Output: a(X ) = NTT(a(X )) in bit-reversed order
1: for i← 0 to log2 N do ▷ i is stage index
2: for j ← 0 to N/2 do ▷ j is butterfly index
3: ωij = ω[i ·N/2 + j] ▷ Fetch factor
4: a(X )2j = a(X )j + a(X )j+N/2 · ωij ▷ Butterfly
5: a(X )2j+1 = a(X )j − a(X )j+N/2 · ωij

6: end for
7: if i ̸= logN − 1 then
8: a(X ) = a(X )
9: end if

10: end for

Authorized licensed use limited to: North China Electric Power University. Downloaded on November 09,2023 at 15:34:35 UTC from IEEE Xplore.  Restrictions apply. 



NTT Mult 
Poly INTT Rescale RLWE-

to-LWE

Mult 
Mono Automorph NTT

Mult 
Poly INTT

Mod-
Switch

Reduce Buffer

+

-

S1 S2 S3 S4

S5 S6 S7 S8 S9

DotProduct

PackTwoLWEs

ExtractLWEs
Compute 
Engine

Compute 
Engine

I/O 
Buffer Shell

DRAM

Driver
Runtime

Applications

D
D

R
PC

Ie

Host CPU

FPGA Board

(a)

CPU PCIe PCIeFPGA

CPU PCIe PCIeFPGA
CPU PCIe PCIeFPGA

CPU PCIe PCIeFPGA
CPU PCIe PCIeFPGA

CPU PCIe PCIeFPGA
CPU PCIe PCIeFPGA

1 thread on CPU + 1 compute engine on FPGA

2 threads on CPU + 1 compute engine on FPGA

4 threads on CPU + 2 compute engines on FPGA

(b)
Figure 1: (a) The architecture and system-view of CHAM. (b) An illustration for the pipelined execution of multi-thread CPU and FPGA.

Compute Intensity (OPs/byte)

Pe
rfo

rm
an

ce
 (T

O
Ps

/s
)

Compute-boundMemory-bound

HMVP
(m=256)

HMVP
(m=4096)NTT

Rescale

DotProduct

KeySwitch

MultPoly

(a)

0

0.01

0.02

0.03

0 1 2 31/
Th

ro
ug

hp
ut

 (1
/s

ec
)

   

Pareto Frontier

Optimal Designs

Utilization (:=%BRAM*0.75 + %DSP*0.25)

(b)

Figure 2: (a) The roofline model for CHAM, where an operation
refers to a 27-by-18 integer multiplication because it fits a DSP slice
on FPGA. (b) Various design points are explored so that the best
performed designs that can fit the FPGA are selected.

A. Number Theoretic Transform (NTT)

[4]

[12]

...

[N/2+4]

...

[N-4]

Bank4

[6]

[14]

...

[N/2+6]

...

[N-2]

Bank6

[5]

[13]

...

[N/2+5]

...

[N-3]

Bank5

[7]

[15]

...

[N/2+7]

...

[N-1]

Bank7

[0]

[8]

...

[N/2]

...

[N-8]

RAM-0

[2]

[10]

...

[N/2+2]

...

[N-6]

Bank2

[1]

[9]

...

[N/2+1]

...

[N-7]

Bank1

[3]

[11]

...

[N/2+3]

...

[N-5]

Bank3

BFU0 BFU1 BFU2 BFU3

Bank0

[2]

[6]

...

[N/4+2]

...

[N/2-2]
Bank4

[3]

[7]

...

[N/4+3]

...

[N/2-1]
Bank6

[N/2+2]

[N/2+6]

...

[3N/4+2]

...

[N-2]
Bank5

[N/2+3]

[N/2+7]

...

[3N/4+3]

...

[N-1]
Bank7

[0]

[4]

...

[N/4]

...

[N/2-4]

RAM-1

[1]

[5]

...

[N/4+1]

...

[N/2-3]
Bank2

[N/2]

[N/2+4]

...

[3N/4]

...

[N-4]
Bank1

[N/2+1]

[N/2+5]

...

[3N/4+1]

...

[N-3]
Bank3Bank0

SWAP0 SWAP1 SWAP2 SWAP3

...

...

...

...

1

3

2

N/8-1

1

2

N/16

N/8-1

OrderRow
0

1
...

N/16

...

N/8-1

0

1
...

N/16

...

N/8-1

[0] [N/2]
[4] [N/2+4]

[1] [N/2+1]
[5] [N/2+5]

[2] [N/2+2]
[6] [N/2+6]

[3] [N/2+3]
[7] [N/2+7]

Figure 3: The NTT datapath for four BFUs.

NTT is a
generalization
of the discrete
Fourier transform
(DFT) to finite
fields. The
forward NTT
and inverse
NTT (INTT)
indicate the
conversion
function between
the normal
polynomial
form and NTT
representation. In
the NTT context,
multiplying large polynomials a(X ) and b(X ) is performed by
c(X ) = INTT(NTT(a(X )) ◦ NTT(b(X ))), where “◦” refers to
coefficient-wise multiplication.

Algorithm 4 shows a constant-geometry NTT [6], [29]. The outer
loop divides the computation of NTT into log2 N stages, while each
stage consists of N/2 independent butterfly operations.

The butterfly parallelism degree (nbf ) affects both performance and
hardware utilization. On the one hand, the N/2 butterfly operations
in each NTT stage can be parallelized with nbf = 2s butterfly units
(BFUs). On the other hand, although a larger nbf indicates higher
parallelism, CHAM prefers fully utilized RAMs. On-chip memory
depth constraints the upper bound nbf because a polynomial needs
to be stored in nbf RAM banks to support high parallelism.

Previously ASIC-based NTT solution (F1 [13]) requires (
√
N ×√

N)-element memory block, which is not feasible for FPGA design.
On the other hand, the FPGA-friendly design (HEAX [31]) with block
RAM optimization requires a large number of look-up table (LUT)-
based multiplexers to handle the stage-variant memory access pattern.

In our work, the following optimizations are proposed to address
these drawbacks in previous work.

1) Parallel constant-geometry dataflow: In our design, a polyno-
mial is stored in 8 round-robin RAM banks. NTT is executed in a
ping-pong fashion as shown in Fig. 3. More precisely, the polynomial
coefficients are read from RAM-0 and written to RAM-1 during the
2r-th stages, while the coefficients are then read from RAM-1 and
written to RAM-0 during the (2r+1)-th stages. Therefore, the NTT
process requires (N/2 · log2 N)/ntf clock cycles. In this work, we set
nbf = 4 therefore all 1R1W RAM banks can be processed parallelly.

The consecutive coefficients of a polynomial are stored across
RAM banks (i.e., the coefficients [0] ∼ [7] are stored in all RAM
banks at address 0), such that they can be read and written simul-
taneously. The coefficients are read in an up-and-down order (i.e.,
[0] ∼ [7], [N/2] ∼ [N/2 + 7], [8] ∼ [15], ..., [N − 8] ∼ [N − 1])
and written in ascending order (i.e., [0] ∼ [7], [8] ∼ [15], ...,
[N − 8] ∼ [N − 1]). This read-write fashion ensures a fixed datapath
(called constant geometry) between the NTT units and the RAM
banks. The SWAP unit reorders the coefficients read by a BFU, for
the purpose of supporting the constant geometry. For example, the
unit of SWAP-0 exchanges the positions of coefficients [4] and [N/2].

2) Generation and storage of twiddle factors: The NTT operation
involves a total number of N − 1 twiddle factors, as shown in Fig. 4
(N = 32, for example). CHAM aims to assign each BFU a separate
ROM bank for storing the corresponding twiddle factors. To this end,
the four twiddle factors in a column are assigned to four BFUs and
used in the same clock cycle (e.g., indices 4 to 7 in stage-2). The
size of twiddle factors is equal to the size of a polynomial (i.e., N).
Moreover, multiple NTT units may share the same copy of twiddle
factors, such that only two sets of twiddle factors are required by a
compute engine, one for NTT and the other for INTT.

3) Customized optimization for modular reduction: Modular mul-
tiplication is the most important but complicated operation in HE. If
a finite field is defined over a modulus with low-hamming weight,
then modular arithmetic can be significantly simplified. Following
the security model described in Section II-F, we choose the prime
numbers (q0, q1, p) = (234+227+1, 234+219+1, 238+223+1) as
the moduli. Each modulus has only three non-zero bits, such that a
multiplication by them can be simplified as three shifts and additions.
B. Polynomial Processing Units (PPUs)

Beyond NTT and INTT, the majority of CHAM functions, in-
cluding MULTPOLY, RESCALE, MULTMONO, AUTOMORPH, and
MODSWITCH, are based on polynomial arithmetic. Hence, we design

Figure 4: The arrangement and utilization of twiddle factors (N=32).

Authorized licensed use limited to: North China Electric Power University. Downloaded on November 09,2023 at 15:34:35 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I: The polynomial arithmetic supported by CHAM.
Functions Details

MODADD(A,B) [a0 + b0, a1 + b1, ..., aN−1 + bN−1]
MODMUL(A,B) [a0 × b0, a1 × b1, ..., aN−1 × bN−1]
REV(A) [aN−1, ..., a1, a0]
SHIFTNEG(A, s) [aN−s, ..., aN−1,−a1, ...,−aN−s−1]

AUTOMORPH(A, k) ai → (−1)⌊ik/N⌋aik mod N

Note: A = [a0, a1, ..., aN−1] denotes the coefficients of a polynomial.

polynomial processing units (PPUs) for supporting these functions. In
CHAM, PPUs also need to support RLWE-TO-LWE and LWE-TO-
RLWE which involve conversion between polynomials and vectors.
From the perspective of implementation, the coefficients of a poly-
nomial are stored in a vector-like data structure, and all polynomial
operations are carried out in a vectorized fashion. For this reason,
both LWE ciphertext (composed of a vector and a scalar) and RLWE
ciphertext (composed of polynomials) can be well supported by a
unified data structure for both polynomials and vectors.

Table I lists the polynomial arithmetic implemented in CHAM.
Except for coefficient-wise modular additions (MODADD) and mul-
tiplications (MODMUL), the function of REV aims to reverse the
order of the polynomial coefficients. SHIFTNEG, serving as an
underlying function for MULTMONO, RLWE-TO-LWE, and LWE-
TO-RLWE, is implemented as a circular shift followed by a negation
of the wrapped-around coefficients. AUTOMORPH is implemented as
a permutation of the coefficients. It is noted that different from the
automorphism unit proposed in F1 [13], the AUTOMORPH task here
executes in a serial fashion, while all PPUs are executed in parallel.

V. EVALUATION

In this section, we implement CHAM on the Xilinx FPGA, and
evaluate its performance based on a variety of benchmarks.
A. Implementation

For a fast prototyping, we implement CHAM on Xilinx U200
FPGA board and Intel Xeon W-2265 CPU@3.5GHz. In particular,
we use the Xilinx Vitis RTL flow for connecting CHAM and the
host CPU. After verifying the functionality and stability of the
prototyping system by running a large number of tests, we switch
to Intel Xeon Gold 6130@2.1GHz and Xilinx VU9P FPGA board
for commercial production, with in-house FPGA platform and driver.
CHAM is implemented at the frequency of 300MHz with the
floorplan shown in Fig. 5. Note that the initial floorplan utilizes too
much BRAMs that imposes pressure on place and routing. To tackle
this problem, we replace some BRAMs by URAM and LUTRAM to
make the utilization rate of all of them below 75%. The final resource
utilization is shown in Table II.

TABLE II: Resource utilization on the Xilinx VU9P FPGA.
Module LUT FF BRAM URAM DSP

Compute Engine 0 259, 318 89, 894 640 294 986
Compute Engine 1 259, 502 90, 043 640 294 986

Platform 234, 066 302, 670 278 7 14

Total* 63.68% 20.41% 72.13% 61.98% 29.04%

* Measured by percentage in terms of the total FPGA resource.

B. Evaluation of Benchmarks

1) NTT: We evaluate the latency, resource utilization, and effi-
ciency of NTT and INTT based on the Xilinx VU9P FPGA, with
the results shown in Table III. The table shows three different
implementation strategies for the twiddle-factor ROMs and the NTT
local buffer, because the Xilinx platform allows a flexible use of either
block RAMs (BRAMs) or LUT-based distributed RAMs (dRAMs).

Besides, we compare our implementation to existing work, i.e.,
HEAX [31] and F1 [13]. The NTT design of HEAX consumes the

TABLE III: Comparison of a single NTT module.

Accelerator Latency # Mult. ATP1 LUT2 BRAM ATP1

(l) (p) (l × p) (u) (l × u)

CHAM (BRAM only) 6144 4 1× 3324 14 1×
CHAM (BRAM+dRAM)3 6144 4 1× 6508 6 1.96×
CHAM (dRAM only) 6144 4 1× 9248 0 2.78×
HEAX [31] 6144 4 1× 22316 11 6.71×
F1 [13] 202 896 7.36× - - -
1 Area-time product is normalized. 2 CHAM deploys on Xilinx FPGAs
with 6-input LUTs and 36kbit BRAMs, while HEAX deploys on Intel
FPGAs with 8-input LUTs and 20kbit BRAMs. 3 Twiddle-factor ROM
uses dRAM, local buffer uses BRAM.

Compute 
Engine 0

Compute 
Engine 1

Platform

Figure 5: Floorplan result
of CHAM based on Xilinx
VU9P FPGA.

0
200
400
600
800

1000

64 128 256 512 1024 2048 4096

Th
ro

ug
hp

ut
   

(O
Ps

/s
ec

.)

No. of Rows

No. of columns=256 1024 4096 8192 16384 GPU

Figure 6: The throughput of CHAM
for different matrices.

same clock cycles as ours. Nevertheless, our design is more compact
due to the use of hardware-friendly moduli and constant-geometry
dataflow. In addition, CHAM achieves high throughput because it has
a total number of 60 NTT units which can perform 195 k operations
per second (ops/sec), while HEAX performS 117 k ops/sec (assum-
ing N = 212). A GPU-based work achieves an NTT throughput
of 45 k ops/sec using a single CUDA kernel with 1024 threads,
which however is much slower than our implementation. Finally, F1,
implemented on ASICs, shows big performance advantage. However,
if evaluated with FPGA platform, its NTT design would consume
more than 65% DSP slices. Beyond the NTT, we also evaluate
performance of key-switch operation. CHAM achieves a throughput
of 65 k ops/sec that is 105× higher than the CPU baseline.

2) Matrix-vector product: We evaluate HMVP based on CHAM
and measure the throughput as shown in Fig. 6. The throughput
depends near-linearly on the number of rows (m) in the matrix. The
number of columns (n) has less impact on the performance except
for the cases of n ≥ m where throughput is degraded because a
row, residing in multiple ciphertexts, needs to be aggregated. We
compare CHAM to the CPU baseline with the results shown in Fig. 8.
We observe that more than 90% computation has been offloaded to
FPGA, resulting in >10× speed-up. We also observe that matrices
with more rows demonstrate a higher performance gain. Next, we
compare CHAM with the GPU implementation. In particular, CHAM
demonstrates smaller latency (0.3× ∼ 0.7×, as shown in Fig. 8) and
higher throughput (4.5×, as shown in Fig. 6) than the GPU.

3) Logistic regression: We then evaluate performance for het-
erogeneous logistic regression (HeteroLR) where data is partitioned
vertically across parties [16]. The HeteroLR trains a federated model
based on overlapping samples provided by two parties A and B. In
the training process, party A and party B compute gradients based
on their local data, while the arbiter then aggregates the gradients
and distributes the updated gradient to them. Both A and B need to
compute HMVP. The framework of Federated AI Technology Enabler
(FATE) originally uses Paillier, a semi-HE algorithm. In this work,
we replaced Paillier with B/FV for better utilizing the ability of
hardware acceleration. Moreover, if combined with the techniques
of mini-batch and matrix tiling, our algorithm is able to support data
of any scale and be deployed in multiple hardware accelerators.

The evaluation of HeteroLR is conducted over datasets of different
sizes, as shown in Fig. 7a and 7b. We conclude that B/FV reduces
computation overhead of all steps in the HeteroLR, including encryp-
tion, vector addition (add vec), matrix-vector product (matvec), and

Authorized licensed use limited to: North China Electric Power University. Downloaded on November 09,2023 at 15:34:35 UTC from IEEE Xplore.  Restrictions apply. 



0

50

100

150
La

te
nc

y 
(s

ec
.)

Matrix size (m × n)

Encrypt AddVec MatVec Decrypt Other GPU

2.3×
3.6×

4.9×

1.1× 1.7×

3.2×

5.3×

500×50 500×500 500×1k 500×2k 1k×50 1k×500 1k×1k

(a) Logistic regression

0

2000

4000

6000

8000

La
te

nc
y 

(s
ec

.)

Matrix size (m × n)

Encrypt AddVec MatVec Decrypt Other GPU

1k×2k 2k×1k 2k×2k 5k×1k 5k×2k 8192×4096 8192×8192

7.8× 8.2× 13× 14× 20×

31×

36×

(b) Logistic regression

0.0
10.0
20.0
30.0
40.0
50.0

0
1
2
3
4
5

De
lp

hi
 L

at
en

cy
 (s

ec
)

Im
pr

ov
ed

 L
at

en
cy

 (s
ec

)

No. of Rows

CPU GPU CHAM Delphi

64 128 256 512 1024 2048

49x 65x 84x
106x

131x

144x

(c) Beaver triple generation

Figure 7: Performance of LR/Beaver (Intel Xeon 6130@2.1GHz vs. NVIDIA Tesla V100@1.29GHz vs. Xilinx VU9P@300MHz).

0

200

400

600

La
te

nc
y 

(m
s)

No. of Rows

CPU GPU CHAM

64 128 256 512 1024 2048

(a) No. of columns = 256

0

500

1000

1500
La

te
nc

y 
(m

s)

No. of Rows

CPU GPU CHAM

64 128 256 512 1024 2048

(b) No. of columns = 4096

Figure 8: Performance of HMVP (Intel Xeon 6130@2.1GHz vs.
NVIDIA Tesla V100@1.29GHz vs. Xilinx VU9P@300MHz).

decryption. Moreover, the HMVP, accelerated by CHAM, is faster
than its CPU baseline by 30× to 1800×. Correspondingly, the end-to-
end HeteroLR is accelerated by 2 to 36 times. The cases that involve
large matrices (e.g., 8192× 4096 and 8192× 8192) observe a high
speed-up because for these cases matrix-vector product dominates the
whole computation.

4) Beaver triple generation: In cryptographic neural-network in-
ference, homomorphic encryption is used for generating multiplica-
tion triples (named Beaver triples) [28]. Since each matrix-vector
multiplication of either party A or party B consumes a triple, a
large number of triples need to be generated. This process can
be significantly accelerated by CHAM. In particular, we improve
the baseline algorithm of Delphi and evaluate it using CHAM. As
shown in Fig. 7c, CHAM demonstrates a speed-up of 49× to 144×
compared to the original implementation.

VI. SUMMARY

In this work, we design an HE accelerator (CHAM) for high-
performance homomorphic matrix-vector product. CHAM might be
the first HE accelerator deployed for commercial applications of fed-
erated learning and multi-party computation. Different from existing
HE accelerators, CHAM employs an approach of algorithm-hardware
co-design. The experimental results demonstrate 1800× speed-up
for matrix-vector product, 36× speed-up for logistic regression, and
144× speed-up for Beaver triple generation.

REFERENCES

[1] A. Al Badawi et al., “Implementation and Performance Evaluation of
RNS Variants of the BFV Homomorphic Encryption Scheme,” IEEE
Transactions on Emerging Topics in Computing, vol. 9, no. 2, 2021.

[2] P. G. M. Alves et al., “Faster Homomorphic Encryption over GPGPUs
via Hierarchical DGT,” in IACR Cryptology ePrint Archive, 2021.

[3] F. Boemer et al., “nGraph-HE2: A High-throughput Framework for
Neural Network Inference on Encrypted Data,” in ACM Conference on
Computer and Communications Security, 2019.

[4] C. Boura et al., “CHIMERA: Combining Ring-LWE-based Fully Ho-
momorphic Encryption Schemes,” Journal of Mathematical Cryptology,
vol. 14, no. 1, 2020.

[5] A. Brutzkus et al., “Low Latency Privacy Preserving Inference,” in
ICML, 2019.

[6] D. D. Chen et al., “High-Speed Polynomial Multiplication Architecture
for Ring-LWE and SHE Cryptosystems,” IEEE Transactions on Circuits
and Systems I, vol. 62-I, no. 1, 2015.

[7] H. Chen et al., “Efficient Homomorphic Conversion Between (Ring)
LWE Ciphertexts,” in IACR Cryptology ePrint Archive, 2021.

[8] J. H. Cheon et al., “Homomorphic Encryption for Arithmetic of Ap-
proximate Numbers,” IACR Cryptology ePrint Archive, 2017.

[9] I. Chillotti et al., “TFHE: Fast Fully Homomorphic Encryption Over the
Torus,” Journal of Cryptology, vol. 33, no. 1, 2020.

[10] W. Dai et al., “cuHE: A Homomorphic Encryption Accelerator Library,”
in IACR Cryptology ePrint Archive, 2016.

[11] N. Dowlin et al., “CryptoNets: Applying Neural Networks to Encrypted
Data with High Throughput and Accuracy,” in ICML, 2016.

[12] J. Fan et al., “Somewhat Practical Fully Homomorphic Encryption,” in
15th International Conference on Practice and Theory in Public Key
Cryptography, 2012.

[13] A. Feldmann et al., “F1: A Fast and Programmable Accelerator for
Fully Homomorphic Encryption,” in Annual International Symposium
on Microarchitecture, 2021.

[14] R. Geelen et al., “BASALISC: Flexible Asynchronous Hardware Accel-
erator for Fully Homomorphic Encryption,” in ACM Conference, 2022.

[15] C. Gentry, “A Fully Homomorphic Encryption Scheme,” Ph.D. disser-
tation, 2009.

[16] S. Hardy et al., “Private Federated Learning on Vertically Partitioned
Data via Entity Resolution and Additively Homomorphic Encryption,”
2017. [Online]. Available: http://arxiv.org/abs/1711.10677

[17] E. Hesamifard et al., “CryptoDL: Deep Neural Networks over Encrypted
Data,” 2017. [Online]. Available: http://arxiv.org/abs/1711.05189

[18] Z. Huang et al., “Cheetah: Lean and Fast Secure Two-Party Deep Neural
Network Inference,” USENIX Security, 2022.

[19] W. Jung et al., “Over 100x Faster Bootstrapping in Fully Homomorphic
Encryption through Memory-centric Optimization with GPUs,” IACR
Transactions on CHES, vol. 2021, no. 4, 2021.

[20] W. Jung et al., “Accelerating Fully Homomorphic Encryption through
Architecture-centric Analysis and Optimization,” IEEE Access, 2021.

[21] C. Juvekar et al., “GAZELLE: A Low Latency Framework for Secure
Neural Network Inference,” in 27th USENIX Security Symposium, 2018.

[22] J. Kim et al., “ARK: Fully Homomorphic Encryption Accelerator
with Runtime Data Generation and Inter-Operation Key Reuse,” 2022.
[Online]. Available: http://arxiv.org/abs/2205.00922

[23] S. Kim et al., “BTS: An Accelerator for Bootstrappable Fully Homo-
morphic Encryption,” in ISCA, 2022.

[24] S. Kim et al., “FPGA-based Accelerators of Fully Pipelined Modular
Multipliers for Homomorphic Encryption,” in International Conference
on Reconfigurable Computing and FPGAs, ReConFig, 2019.

[25] S. Kim et al., “Hardware Architecture of a Number Theoretic Transform
for a Bootstrappable RNS-based Homomorphic Encryption Scheme,” in
IEEE International Symposium on FCCM, 2020.

[26] W. Lu et al., “PEGASUS: Bridging Polynomial and Non-Polynomial
Evaluations in Homomorphic Encryption,” in IEEE Symposium on
Security and Privacy, 2021.

[27] V. Migliore et al., “Hardware/Software Co-Design of an Accelerator
for FV Homomorphic Encryption Scheme Using Karatsuba Algorithm,”
IEEE Transactions on Computers, vol. 67, no. 3, 2018.

[28] P. Mishra et al., “DELPHI: A Cryptographic Inference Service for Neural
Networks,” in 29th USENIX Security Symposium, 2020.

[29] M. C. Pease, “An Adaptation of the Fast Fourier Transform for Parallel
Processing,” Journal of ACM, vol. 15, no. 2, 1968.

[30] B. Reagen et al., “Cheetah: Optimizing and Accelerating Homomorphic
Encryption for Private Inference,” in HPCA, 2021.

[31] M. Sadegh Riazi et al., “HEAX: An Architecture for Computing on
Encrypted Data,” in ASPLOS, 2020.

[32] N. Samardzic et al., “CraterLake : A Hardware Accelerator for Efficient
Unbounded Computation on Encrypted Data,” in ISCA, 2022.

[33] S. Sinha Roy et al., “FPGA-Based High-performance Parallel Architec-
ture for Homomorphic Computing on Encrypted Data,” in HPCA, 2019.

Authorized licensed use limited to: North China Electric Power University. Downloaded on November 09,2023 at 15:34:35 UTC from IEEE Xplore.  Restrictions apply. 


