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Abstract—Secure Element (SE) in SoC sees an increasing
adoption in industry. Many applications in IoT devices are bound
to the SE because it provides strong cryptographic functions and
physical protection. Though SE-in-SoC provides strong proven
isolation for software programs, it also brings more design com-
plexity and higher cost to PCB board building. More, SE-in-SoC
may still have security concerns, such as malware installation and
user impersonation. In this work, we employ TEE, a hardware-
backed security technique, for protecting SE-in-SoC and RISC-
V. In particular, we construct various enclaves for isolating
applications and manipulating the SE, with the inherently-secure
primitives provided by RISC-V. Using hardware and software
co-design, the solution ensures trusted execution and secure
communication among applications. The security of SE is further
protected by enforcing the SE to be controlled by a trusted
enclave and making the RISC-V core resilient to side-channel
attacks.

Index Terms—TEE, Enclave, RISC-V, Secure Element, DMA.

I. INTRODUCTION

During the last decades, we have seen a rapid growing of
Internet-of-Things (IoT) devices. Thanks to the need of big
data analysis, artificial intelligence (AI), and 5G. The IoT
devices have been widely used in industry, automotive, smart
cities, smart home, finance, and wearables. The number of
connected IoT devices that are in use now exceeds 25 billion,
and will be tripled by 2025 [1]. The IoT market is $151B
in 2018, and forecasted to grow to $1,567B by 2025 [2]. As
another observation, IoT devices are not only used as an end
device for collecting data, but also equipped with computation
and even Al capability, meaning that more data process will
be moved to IoT devices. This exacerbates design difficulty
with the constraint of cost and causes security issues.

A Secure Element (SE) is a tamper-resistant platform capa-
ble of securely hosting applications and their confidential and
cryptographic data in accordance with the rules and security
requirements set by well-identified trusted authorities, like
GlobalPlatform [3], [4]. Secure Element (SE) is utilized in
applications that require hardware cryptographic operations.
The SE used to be a standalone chip, but recently it is more
integrated within the SoC, avoiding communication between
the SE and rest of the system exposed to attacks. Integrated SE
has been widely implemented in many SoCs, such as mobile
phones, SIMs, and smart cards.
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With multiple applications being stored and their processes
executed within a single device, it is essential to be able to
host trusted applications and their associated credentials in
a secure environment. In particular, authentication, identifica-
tion, signatures, and PIN management are needed for different
applications and require a protected environment to operate
securely.

If not protected properly, attackers may compromise the
cryptographic keys or dump sensitive data within the IoT
devices [5]. More commonly, compromised IoT devices can be
used as an entry point to access more devices in the network or
even the cloud [5]. The security issue exacerbates considering
that most IoT devices are not protected at all, while some
of them are equipped with quite weak protection layer. A
typical attack vector is to find vulnerabilities of the application
code, using which the attacker can intrude the firmware layer.
The attacker can then control the system by modifying the
firmware, such as unlock the vehicles remotely.

A secure environment has been introduced by Trusted
Execution Environment (TEE). A TEE is a secure area of a
processor, which guarantees code and data loaded inside to be
protected with respect to confidentiality and integrity. A typical
TEE involves the Arm TrustZone [6]. TrustZone divides on-
chip resources into a secure world and an insecure world.
The SE APIs are used by trusted applications (TAs) which
are normally located in the secure world. All TAs can call
the SE APIs, meaning that the communicated data between
a TA and the SE can be observed or even modified by other
TAs. This might threaten confidentiality and integrity of data.
Other TEE solutions, including Intel SGX [7], Keystone [8],
MultiZone [9], and SiFive Shield [10], overcome this problem
by partitioning the processor into more zones (or called
enclaves) than two. In particular, Intel SGX isolates specific
application code and data in memory, allowing user-level code
to allocate enclaves. The enclaves are protected from processes
running at higher privilege levels. This ensures security of
the enclaves even if the OS is compromised. Keystone de-
scribes a TEE framework for RISC-V CPUs. Keystone relies
on hardware primitives for memory isolation (i.e., physical
memory protection, or PMP) and builds a runtime layer in each
enclave, which acts as a software-programmable layer. The
runtime, running in supervisor mode, provides functionality
plugins for system call interfaces, libc support, in-enclave
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virtual memory management, self-paging, and more inside the
enclave [8]. The use of customizable runtime provides more
design flexibility. Both SGX and Keystone are designed for
server-level CPUs, thus more suitable for the cloud. MultiZone
and SiFive Shield target RISC-V based IoT devices, both of
which also consider SoC security rather than only the CPU. In
particular, MultiZone uses the PMP to partition SoC resource
for the CPU, and uses IOPMP to limit the access privilege
of the other bus masters. In addition to PMP, the SiFive
Shield marks the applications within different worlds. The
marks determine the privilege of accessing the core, cache,
interconnect, peripheral, and memory.

To this end, we propose XINE (eXecution-in-Enclave), a
lightweight TEE framework for RISC-V based MCUs. The
TEE, built on RISC-V, relies on its standard specification
for PMP. The SE hardware is manipulated by a specially
designed enclave, such that the cryptographic operations are
isolated from applications. To call cryptographic functions,
application enclaves need to switch the core to that specific
enclave. In addition, we design another special enclave that
stores runtime callable by other enclaves. This saves on-chip
resource. All of these enclaves run in U-mode of the RISC-
V, and they are switched by an enclave privilege arbitrator
(EPA) running in M-mode. In addition, we implement a
DMA controller for inter-enclave data transfer. Since the DMA
allows effective data transfer without intervention of CPU, the
DMA permission needs to be carefully designed to not violate
security specifications. A new CSR is added to the CPU to
arbitrate DMA transactions.

II. XINE OVERVIEW

XiE is designed for an RISC-V based MCU that contains
only M-mode (which can directly manage physical resources)
and U-mode (where OS and user-space applications run).

A. Design Principles

The design should leverage the hardware primitives pro-
vided by RISC-V specifications. The RISC-V core defines
multiple privilege levels, namely M-, S-, and U-mode. The
CPU designer can decide how many privilege levels to im-
plement according to the complexity of the system. The M-
mode is usually regarded as trusted because it has the highest
privilege level and can be fully verified. The higher privilege
modes need to schedule applications of lower privilege modes,
and also handle interrupts and exceptions. Physical memory
protection (PMP) is another security primitive that provides
hardware-based capability for memory isolation. It aims to
partition memory address (including RAM, Flash, and GPIO)
into multiple regions such that applications running in different
regions cannot access each other.

The second principle is minimality. Many IoT devices are
quite sensitive to cost, and therefore we need to make a balance
between security and design cost. Two aspects are considered.
First, the EPA is only used for secure boot, switching enclaves,
and handling parts of exceptions/interrupts from enclaves.

Second, the runtime is kept for only one copy instead of
multiple copies.

The third principle is scalability. The platform designer
should be able to determine the number of enclaves. Note
that an enclave refers to an isolated memory region, and
the number of enclaves is limited by the number of the
PMP setting. The RISC-V specifications suggest 16 entries
of configuration [11], meaning that the memory address can
be partitioned into up to 16 regions.

Finally, the design should be extendable, meaning that more
security primitives could be implemented without altering the
current design fundamentally. For example, the design can be
extended to 1) a RISC-V core with M-, S-, and U-mode, 2) a
multi-core microprocessor, and 3) a more complex SoC, such
as with bus masters other than the RISC-V core, and even with
coprocessors. Some other security primitives include secure
boot, security features for the CPU (anti-side-channel, anti-
fault-injection), and memory encryption.

B. Threat Model

In this work, we assume that M-mode is trusted. This
assumption is reasonable because the M-mode code, due to
its small size, is fully verified at design time, and also it is
measured with respect to its integrity during system boot (will
be elaborated in Section III-A).

We define three assets that XINE aims to protect. The first
asset is firmware that contains important information of the
device and the system, such as the device ID and configuration
of the system. Vulnerabilities of the IoT system are also fixed
through updating the firmware. Thus, it is essential to avoid
the firmware to be dumped or modified. The second asset is
cryptographic secrets. Many IoT devices contain cryptographic
modules. The generation, storage, and usage of keys need to
be carefully protected. This also explains why integrated SE
is replacing embedded SE. The third asset is sensitive data,
such as personal information and user password.

Similar to the [8], we consider four types of attacks,
namely, physical attack, software attack, side-channel attack
and denial-of-service (DoS) attack. A physical attacker can
intercept, modify, and/or replay signals that leave the chip
package, but cannot observe, modify, or reverse engineer the
components inside the chip package. A software attacker can
control applications, the OS, and/or network communication.
A side-channel attacker can observe the signals which are not
aimed to be exposed to end-user but may cause information
leakage. Typical side channels include cache timing, power
analysis, and electromagnetic emission. DoS attacks refer to
the malicious enclaves or the OS that refuse responding to the
request from other enclaves, OS, or the EPA.

III. XINE FRAMEWORK

A. XINE Architecture

The overall design of XINE is shown in Fig. 1(a). The TEE
is implemented in a RISC-V core with U- and M-mode. The
Enclave Privilege Arbitrator (EPA) runs at the M-mode, while
the OS and the enclaves run at the U-mode. As shown in
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Fig. 1. (a) Implementation of the TEE and (b) privileges of the enclaves.

Fig. 1(a), the TEE contains a variety of enclaves, namely a
crypto enclave, a runtime enclave, and multiple app enclaves.

1) Enclave Privilege Arbitrator: The M-mode code is used
for accessing hardware, configuring control and status registers
(CSRs), and initiating the bootloader. The EPA, running in
M-mode, can switch execution between the OS and enclaves,
and can also configure the PMP entries for an enclave, which
guarantees isolation [11].

The PMP unit provides per-hart! M-mode control registers
to allow physical memory access privileges (read, write, and
execute) to be specified for each physical memory region. The
memory region specified by each PMP entry consists of two
sets of CSRs, namely an address register that specifies the
address of the corresponding memory region, and a configu-
ration register that specifies the access privilege and the mode
of address matching. PMP checks are applied to all accesses
when the hart is running in the S- or U-mode. Different
from TrustZone where bus slaves (e.g., on-chip RAM/Flash,
off-chip DDR, and peripherals) are gated by a configuration
module, a PMP violation will be trapped at the processor.

2) Enclaves: PMP-enforced isolation not only protects sen-
sitive applications, but also jails malicious applications. The
enclaves that encapsulate applications are named App Enclaves
(AEs). In addition, we define two special enclaves, namely, a
Crypto Enclave (CE) and a Runtime Enclave (RE).

IThe RISC-V defines the hart as a hardware thread.

RISC-V Core

Security Interrupt
CSR DMA Controller

I 1 1
L. 1 1 1 1

SRAM Flash DDR

-
=
b

________

o
[
h=2
Y
<

PKE | | TRNG
SME NVM |:|

Fig. 2. The SoC contains two RISC-V cores, one for executing applications
and the other for operating the SE.

The CE has exclusive control over the SE. Fig. 2 shows a
typical SE which composed of a RISC-V core, cryptographic
accelerators, a true random number generator (TRNG) and
a piece of eFuse for storing keys. Different from traditional
designs, the SE contains a separate RISC-V core. The RISC-
V core, controlled exclusively by the CE, communicates with
the main system via a mailbox. For instance, to encrypt data,
the CE places the plain data in the mailbox (located in the
CE), and then the RISC-V core reads the data and encrypts
them using the SE hardware. Once completed, the RISC-V
core places the encrypted data in the mailbox and notifies the
CE to pick. The mailbox is only accessible to the CE, but not
to the APs, which prevents the crypto message of AE-1 to be
dumped or modified by AE-2.

When an AE needs to use cryptographic services provided
by the CE, the AE needs to request the EPA to transfer control
to the CE. Since the CE has full privilege to the AE region,
the CE can run the requested cryptographic operation on the
message of the AE directly. When the operation is completed,
the CE writes the results in the address specified by the AE.
A set of SE APIs is to be designed for supporting these
operations.

The RE stores the runtime (such as the standard libc) that
is callable by all AEs. As revealed in Fig. 1(b), AEs can
execute (but not read or write) the RE, which guarantees the
confidentiality and integrity of the RE. Note that calling a RE
function does not need to transfer control to RE. The use of
RE avoids the runtime to be stored in each AE, thus resulting
in less usage of on-chip resource.

3) Inter-Enclave Communication: The PMP partitions
memory region into different parts that are mutually isolated,
but sometimes the enclaves may need to transfer data between
each other. This can be achieved through a mailbox. In
particular, the OS assigns a memory region that is accessible
to both the source and the destination enclaves. The source
enclave puts the message into the mailbox if the mailbox is not
full, while the destination enclave gets the message from the
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Fig. 3. Access control flow of the DMA.

mailbox if the mailbox is not empty. The size of the mailbox
and the message format are pre-defined. This mechanism is
efficient for data transfer between cores that are running in
parallel because the source core and the destination core can
frequently check the availability of the mailbox. In this work,
the MCU has only one logic core. Frequently checking the
mailbox may result in too many switches between the source
and the destination enclaves.

To accelerate data transfer between AEs, we implement a
direct memory access (DMA), as shown in Fig. 2. DMA allows
data to be transferred without intervention of the CPU, thus
significantly improving data throughput. However, since the
DMA unit is not a part of the CPU, it cannot tell if a DMA
request is legitimate or not. To address this problem, we add a
special security CSR within the CPU to check the legitimacy
of a DMA request. Let us consider an example that AE-1
requests to move data to AE-2 (Fig. 3). First, AE-1 makes a
DMA request indicating the destination enclave and the data
size. The request is checked by the security CSR. If the DMA
transfer is allowed by the CSR, then AE-1 checks a special
table (named Availability Table) which records the available
memory space of AE-2. Only if AE-2 has enough memory
space to receive the data, then the DMA controller starts the
transfer. Here, the Availability Table, accessible to all AEs, is
updated every time when an AE exits its execution. In addition,
to avoid arbitrary DMA requests (by malicious applications),
AEs can only request to move its data to other enclaves, but
not able to request data from other enclaves.

4) Secure Boot: Secure boot requires not only a hardware
root-of-trust that is not accessible to any user, but also a
trusted boot chain where each step of boot code is mea-

|:> DICE [> Layer 0 |:> Layer 1 E> Layer n
Power
On Unique
Device Secret 0 Secret 1 Secret n
Secret

Fig. 4. Secure boot using DICE [12].

sured for integrity. We employ Device Identifier Composition
Engine (DICE), a lightweight architecture more suitable for
IoT devices. The DICE provides hardware-based identity and
attestation, as well as sealing, data integrity, device recovery
and update [13].

Fig. 4 shows the boot process using DICE. The DICE has
exclusive access to the unique device secret (UDS). Once
powered on, the DICE combines the UDS and the first mutable
code (and optionally hardware state and configuration data),
and computes the corresponding measurement. This layer
results in a Compound Device Identifier, which supplies as the
input to the next layer. This process continues until the whole
boot chain is completed. In our work, XINE boots from the
EPA, and then the CE and the RE. Each component in the boot
chain needs to be measured and signed. If the measurement
does not match the expected hash value, then the system fails
to boot.

B. Enclave Lifecycle

Fig. 5 shows the lifecycle of an AE. In the MCU, each
AE is assigned with a static memory region enforced by the
PMP. The code and data are measured before provisioned
to the corresponding AEs. An AE sleeps if the PMP is not
switched to its configuration entry and therefore the core is not
executing its code. When the control is transferred to the AE,
the corresponding PMP entry is set up, and the context of the
AE is recovered. We name this process as a wakeup. Then the
code within the AE starts to run from the specified entry point.
The AE becomes suspended if one of the following events
happens, namely 1) the AE requests to transfer the control to
another AE or to the CE, and 2) an interrupt or an exception
happens. In these situations, the CPU saves the context, and
enters M-mode to switch the control to the intended enclave.

Py
o]

Fig. 5. The lifecycle of an App Enclave.

C. Security Analysis

During enclave execution, the enclave only has access
to its own memory region, and any illegal access will be
refused by the PMP. In addition, the use of the security



CSRs controls the privilege of DMA, such that illegal DMA
requests will be prohibited by the CPU. Finally, the partition of
multiple enclaves (rather than two) reduces the probability of
interference between individual applications, thus protecting
sensitive code and data against software attacks. For physical
attacks, the integrated SE avoids bus data to be snooped. In the
current design, the data stored in off-chip DDR is not protected
against physical attacks since the DDR is not encrypted in
the current implementation. XINE is also resistant to cache
side-channel attacks because the EPA can flush the registers
and caches during context switch. For power analysis, EM
emissions, and fault injection attacks, XINE currently has no
countermeasures.

IV. CASE STUDY

As a case study, we choose a QR-code scanner. The QR-
code scanner has been widely used in electronic payment
and requires high-level security. The following steps lists a
simplified process of an electronic payment.

o The embedded camera captures the QR-code image pro-
vided by the customer.

o The embedded core or logic parses the QR-code image
into binary data.

o The SE encrypts the binary data and calculates its hash.

« The QR-code scanner sends the encrypted data as well
as its hash to the cloud via a secure channel.

o The cloud verifies the authenticity and integrity of the
data. Only if the data is authenticated and not modified,
then the payment process continues.

o Upon the payment is completed in cloud, the cloud
notifies the QR-code scanner.

In this example, we design three App Enclaves. AE-1 is
used for reading the QR image. AE-2 is used for parsing the
QR image into binary data. If the parsed QR code is legal, then
AE-2 requests the CE for operating authenticated encryption.
The encrypted data, as well as its authentication tag, is then
transferred to AE-3, which sends the encrypted data and its
authentication tag to the cloud. AE-3 is also responsible for
receiving response from the cloud. We note that AE-1 and AE-
3 are used for communicating with external commands/data,
and therefore both of them cannot affect the sensitive data and
operation within AE-2.

V. SUMMARY

In this work, we propose XINE, a lightweight TEE frame-
work for RISC-V based MCUs. The design follows the
principles of leveraging security primitives, scalability, min-
imality, and extendibility. We employ the hardware primitive
PMP to enforce isolation of applications. The isolation not
only protects sensitive applications, but also jails malicious
applications. We design special enclaves to control the SE
exclusively and to store the runtime, respectively. In addition,
we design a DMA for supporting efficient inter-enclave data
transfer. As future work, we aim to extend XINE to more
general scenarios, such as 1) a RISC-V core with M-, S-,
and U-mode, 2) a multi-core microprocessor, and 3) a more

complex SoC with bus masters other than the RISC-V core,
and even with coprocessors.
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