
A Learning-based Approach to Secure JTAG against
Unseen Scan-based Attacks

Xuanle Ren1,2, R. D. (Shawn) Blanton2, and Vı́tor Grade Tavares1

1INESC TEC and Faculty of Engineering, University of Porto, Porto, Portugal
2Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA

Abstract—Security is becoming an essential problem for in-
tegrated circuits (ICs). Various attacks, such as reverse en-
gineering and dumping on-chip data, have been reported to
undermine IC security. IEEE 1149.1, also known as JTAG, is
primarily used for IC manufacturing test but inevitably provides
a “backdoor” that can be exploited to attack ICs. Encryption
has been used extensively as an effective mean to protect ICs
through authentication, but a few weaknesses subsist, such as
key leakage. Signature-based techniques ensure security using
a database that includes known attacks, but fail to detect
attacks that are not contained by the database. To overcome
these drawbacks, a two-layer learning-based protection scheme
is proposed. Specifically, the scheme monitors the execution of
JTAG instructions and uses support vector machines (SVM) to
identify abnormal instruction sequences. The use of machine
learning enables the detection of unseen attacks without the
need for key-based authentication. The experiments based on the
OpenSPARC T2 platform demonstrate that the proposed scheme
improves the accuracy of detecting unseen attacks by 50% on
average when compared to previous work.

I. INTRODUCTION

Security is becoming a central problem for integrated cir-

cuits (ICs). Among the potential attacks, scan-based attacks

are performed through the standard test access port and the

boundary-scan architecture which is defined by the IEEE

1149.1 (or named JTAG). Scan-based attacks are one of the

most commonly exploited methods due to two main reasons

[1]–[3]. First, the JTAG is widely used as an interface for

manufacturing testing and in-field debugging in modern ICs

[4]. So it is easy to find the test access ports in most

chips. Second, the JTAG provides powerful features to access

on-chip data, such as firmware and on-chip memory. For

example, the OpenSPARC T2 benchmark [5] has more than

ten debugging functions accessible through the JTAG, e.g.,

L2 cache r/w, memory built-in self-test (MBIST), shadow

scan, direct memory observation, etc. All these functions are

undocumented, that is, unauthorized users do not know which

JTAG functions are implemented and how they are operated.

In [6], an attacking flow is described for reverse engineering

undocumented JTAG functions within the OpenSPARC T2.

The attackers may have different levels of access to the IC

and thus may employ different types of attacks, e.g., analyzing

power consumption and/or magnetic emanation, influencing IC

fabrication process, modifying the communication within the

IC, etc. In this paper, it is assumed that the attacker can only

access the JTAG ports. Although some attackers with greater

levels of access are able to utilize more powerful tools, it is

still reasonable to assume that the JTAG port is an essential

conduit for accessing the IC [1], [2].

Various approaches have been proposed to protect the JTAG

from being misused, including disabling the JTAG before

shipping the IC to customers [7], obfuscating the JTAG outputs

[8], etc. The disadvantages however include hampering of in-

field debugging and/or limiting JTAG use to public functions.

Encrypting the JTAG using plain-text passwords or more

complex protocols is deemed a more secure technique since

user authentication is required [9]–[15]. However, it modifies

IEEE 1149.1 due to the support of lock/unlock commands,

and suffers from the problem of password leakage.

To protect the private JTAG functions and also to overcome

the drawbacks of the encryption techniques, detecting attacks

by monitoring user behavior is becoming a potential approach

[6], [16]–[18]. One example is signature detection, which

attempts to identify events that misuse the system by creating

models of attacks (called signatures), and therefore knowledge

of normal events is not required for these approaches [16].

Observed behavior that matches any of the signature is labeled

as an attack. However, the effectiveness of a signature detector

strongly relies on the completeness of the attack models.

Anomaly detection, on the other hand, creates models of

normal uses and detects operations that do not conform.

An anomaly detector can be achieved by either finite state

machines [17] or probabilistic models (e.g., Markov chain

[18]). A finite state machine labels all deviations as attacks,

while a probabilistic model labels the user behavior with a

probability rather than a yes-no decision. However, for both

models, variances of normal operation lead to a high false

positive rate. The third approach is learning-based models that

detect attacks using a classifier. In [6], a decision tree is learned

from normal operation and various attack strategies. However,

JTAG security is still threatened by novel or unseen attacks

that either target a different IC component or exploits a new

strategy never encountered before by the classifier.

In this paper, a two-layer learning-based protection scheme

is proposed. The scheme mitigates the problem of unseen

scan-based attacks and allows variances of normal operation.

Layer-I applies a basic check that verifies if basic rules for

JTAG operations are violated. Layer-II labels the user behavior

(i.e., the sequence of opcodes) as normal or attack using a

support vector machine (SVM) classifier. The user behavior

2016 IEEE Computer Society Annual Symposium on VLSI

978-1-4673-9039-2/16 $31.00 © 2016 IEEE

DOI 10.1109/ISVLSI.2016.107

541

Authorized licensed use limited to: Zhejiang Tmall Technology Co.Ltd.. Downloaded on July 31,2021 at 04:39:43 UTC from IEEE Xplore. Restrictions apply.

Basic check Pass?

Yes

Collect last n
opcodes

SVM
classification Pass?

Yes

No

No

Attacker

Normal

Layer-I

Layer-II

Figure 1: The protection scheme comprises two layers: basic

check and SVM classification.

of operating the JTAG is initially examined by layer-I, and

then examined by layer-II only if it passes layer-I. Experi-

ments based on the OpenSPARC T2 demonstrate a detection

improvement for unseen scan-based attacks by 50% on average

when compared to previous work. However, the capability

to detect new attacks is difficult to verify comprehensively

since different types of attacks are always arising. In the

experiments, a known attack is treated as unseen by excluding

it from classifier training. The experiments therefore provide

a preliminary evaluation of the capability to detect new scan-

based attacks.

The rest of this paper is organized as follows. Section II

describes the two-layer protection scheme. In Section III, the

hardware architecture of the protection scheme is presented

and its overhead is estimated. Section IV compares the per-

formance of the scheme with previous approaches. Section V

discusses the limitations of the two-layer protection scheme.

Finally, Section VI concludes the paper.

II. TWO-LAYER PROTECTION SCHEME

As assumed, the attacker can supply inputs and observe the

corresponding outputs via the JTAG ports. In addition, the

attacker may apply attacks that are not known by the protec-

tion scheme. The proposed approach employs a hierarchical

scheme that comprises two layers of protection (Figure 1).

The user behavior is initially examined by layer-I, and then

examined by layer-II only if it passes layer-I.

A. Layer-I: Basic Check

Basic check is intended to detect attackers that violate

the basic rules of JTAG operation. An attacker that knows

little to nothing about the IC may operate the JTAG in a

manner that substantially differs from normal users. The basic

check can block the obvious attacks, including the use of an

illegal opcode and/or incorrect length of read/write data. Illegal

opcode refers to the bits loaded into the instruction register

(IR) that do not correspond to any valid JTAG function. An

n-bit IR means that at most 2n opcodes are available. However,

usually only a subset of all the possible opcodes correspond

to valid JTAG functions, while others remain unused and are

thus considered illegal. The illegal opcodes cannot control or

observe any internal signal of the IC, and therefore will not

be used by an authorized user. The second misuse involves

invoking an incorrect length of read/write data. Specifically,

most legal opcodes utilize a data register (DR) in order

to perform their functions, and an authorized user should

read/write the same length of data as required by the DR.

For example, to access on-chip memory, a JTAG opcode for

loading the memory address is necessary. However, if an

attacker is not aware of the address length, then the length

of the supplied input might differ from the correct one.

Both of these misuses can be easily avoided by an autho-

rized user, but not for a user with no prior knowledge. If

either misuse is detected, then the user is labeled as an attacker

immediately; otherwise, layer-II is invoked.

B. Layer-II: SVM Classification

1) Opcode Sequence: The misuses examined by layer-I

might be avoided by an attacker with prior knowledge of

the specific JTAG. In layer-II, the sequential order of JTAG

instructions is considered because it better characterizes the

behavior of a user. Specifically, a sequence of n instructions

(i.e., the opcode sequence) is a behavioral pattern of the user

utilized for identifying an attacker.

For the OpenSPARC T2 [5], an individual JTAG operation

is usually achieved by a sequence of specific instructions. For

example, the memory built-in-self-test (MBIST) operation is

performed by an instruction sequence of MBIST BYPASS,

MBIST MODE, MBIST START and MBIST RESULT. An-

other observation is that the opcode sequence length varies

for different operations, which makes it a challenging task to

identify the starting point and the ending point of a real-time

operation. In this work, the opcode sequence length, denoted

by n, is set to a fixed value, and the value chosen for n is

determined empirically from experiments.

Finally, the opcode sequences of the OpenSPARC T2 are

extracted from both normal operation and attacks in an over-

lapping manner using a fixed-size sliding window.

2) SVM Classification: The extracted opcode sequences

(n=4) are visualized in a two-dimensional space using prin-

ciple component analysis (PCA) as shown in Figure 2 [19].

Specifically, the opcode sequences are “rescaled” in a space

that is based on a set of linearly uncorrelated variables (called

principle components). The x-axis and y-axis represent the

“scale” in terms of the first and the second principle com-

ponents, respectively. Figure 2 shows that normal operation

and attacks not only have a non-linear boundary, but also

have overlapping regions. To learn the non-linear boundary,

a support vector machine (SVM) is used.

A support vector machine (SVM) is a supervised learning

model used for classification. In classification, given a set

of samples, each belonging to one out of two classes, a

classifier based on these samples (called the training process)

is constructed and later used to predict which class a new

sample belongs to. In this work, a set of opcode sequences,

labeled either normal or attack, are used to train an SVM

classifier. In real time, each opcode and the previous (n− 1)

542

Authorized licensed use limited to: Zhejiang Tmall Technology Co.Ltd.. Downloaded on July 31,2021 at 04:39:43 UTC from IEEE Xplore. Restrictions apply.

Figure 2: The opcode sequences (n=4) extracted from the

OpenSPARC T2 are visualized using PCA.

y= -1

y=1

y=0

�<1

�>1

�=0
margin

(a)

y=1

y= -1

y=1

(b)

Figure 3: (a) An SVM model separates two classes of samples

by finding a decision boundary and maximizing the margin. (b)

A one-class SVM is trained based solely on normal samples

and finds regions where samples form high-density clusters.

opcodes compose a sequence which is then categorized by the

classifier.

The objective of an SVM is to find a decision boundary

that can separate two classes of samples such that the smallest

distance between the decision boundary and any of the samples

is maximized (Figure 3(a)). The decision boundary is modeled

as

y (x) = wTφ (x) + b (1)

where x is a sample, y (x) is the prediction of x, and φ (x)
is a fixed feature-space transformation. The decision boundary

(i.e., the value of w and b) is found by solving

argmin
w,ξ

1

2
‖w‖2 + C

N∑
n=1

ξn (2)

s.t. ‖tn
(
wTφ (xn)

)
+ b‖≥ 1− ξn, n = 1, ..., N

where xn is the n-th training sample, tn is the label (either

1 or -1) of xn, ξn is a slack variable that allows samples to

be misclassified with a penalty, and C > 0 controls the trade-

off between the slack variable penalty and the margin. This

optimization problem is convex and to find the solution, its

dual representation is derived. More details can be found in

[20]. The final solution is

y (x) = sgn

(∑
n∈S

antnk (x, xn) + b

)
(3)

and

b =
1

NS

∑
n∈S

(
tn −

∑
m∈S

amtmk (xm, xn)

)
(4)

where S denotes the set of support vectors, NS represents

the number of support vectors, and k (x, x′) = φ (x)φ (x′)
denotes the kernel function in terms of x and x′. The support

vectors contain the samples that are located within the margin

and the samples that are misclassified. Once the SVM classifier

is trained, all the samples are discarded except for those

corresponding to the support vectors. The kernel function can

be linear or non-linear, which corresponds to a linear boundary

or a non-linear boundary, respectively. In this work, the radial

basis function (RBF), shown in formula (5), is used as the

kernel function.

k (x, x′) = exp

(
−‖x− x′‖2

2σ2

)
(5)

A one-class SVM is an unsupervised learning algorithm

used for novelty detection [21]. The principle of a one-

class SVM is to capture regions in the input space where

samples form high-density clusters as shown in Figure 3(b).

The capability of detecting unseen scan-based attacks will be

evaluated for both a one- and two-class SVM. In addition,

other learning algorithms, including a neural network and k-

nearest-neighbors, are evaluated.

3) Delayed Labeling: Since the overlap in Figure 2 may

cause false positives and/or false negatives, behavior is not

labeled legitimate or illegitimate in a per-instruction manner;

instead, the labeling occurs after every n dly instructions

are executed. Specifically, the behavior is labeled malicious

only when at least n th out of n dly predictions indicate

the existence of an attacker. The optimal values for n th and

n dly are determined empirically from experiments.

Although mitigated by delayed labeling, false positives and

false negatives may still occur. To deal with false positives

(i.e., an authorized user is identified as an attacker), the user

should have the capability to “reset” the system in order to re-

establish access to the JTAG. However, the details of system

reset and access re-establishment are beyond the scope of this

paper.

III. SVM HARDWARE ARCHITECTURE

Ideally, detecting a JTAG attack should be accomplished

in real time, at the time a JTAG instruction is loaded. Ac-

complishing real-time detection therefore requires hardware

architecture implementation of an SVM. As shown in Figure

4, the SVM classifier employs a pipelined architecture. The

computation of the RBF function uses a look-up table (named

RBF-LUT) that is built by calculating all possible values for

the operators in advance. In addition, the L1-norm is used for

computing the distance between samples. Let n be the length

of an opcode sequence, m be the number of bits used for a

JTAG opcode, and b be the precision of an RBF result. The

memory size of the RBF-LUT is 2m×n× b. In this work, the

memory size is 2KB assuming n=4, b=16 and m=8 (n=4 is

543

Authorized licensed use limited to: Zhejiang Tmall Technology Co.Ltd.. Downloaded on July 31,2021 at 04:39:43 UTC from IEEE Xplore. Restrictions apply.

...

�nRBF
memory

control unit
output
class

addr
data

SV1

SV2

...

�1

�2

...

input
instance

non-volatile memory

SVM
classifier

delayed labeling

class

basic
check

final decision

TAP controller

Figure 4: The architecture for detecting scan-based attacks.

The SVM classifier employs a pipelined architecture.

an optimal value based on the experiments in Section V, and

m=8 stems from the OpenSPARC T2 design). The latency of

making a per-instruction prediction is (S+T−1) cycles, where

S denotes the number of support vectors and T denotes the

number of pipeline stages.

Table 1 compares the area overhead and the latency of the

two-layer scheme with [6]. The comparison shows that the

two-layer scheme has more area overhead and longer latency

but in Section IV we show that it has much better performance.

Approach Latency Area (μm2) % of chip area

Two-layer scheme 520 755,592 1.79%

[6] 8 452,253 1.07%

Table 1: The latency and the area overhead of the two-layer

SVM-based scheme (n=4) is compared with [6].

The area of the SVM classifier depends on n in two folds.

First, n affects the width of the pipeline linearly since it

represents the dimension of the data. Second, the size of the

RAM storing support vectors (named SV-RAM) relies on n
which affects both the number of support vectors (SVs) and

the size of each SV. A larger n produces more SVs, e.g.,

the numbers of SVs produced by n=3, 4, 5, 6 are 763, 844,

901 and 962, respectively. However, because these numbers

are between 512 and 1024, the column size remains 1024

(each row stores an SV). Thus, the area of the SV-RAM is

linearly dependent on n. As shown previously, the area of the

RAM storing the RBF-LUT also depends on n linearly. To

summarize, the relative area overhead in terms of n is: 0.75

(n=3), 1 (n=4), 1.25 (n=5), 1.5 (n=6).

IV. EXPERIMENT

To validate the effectiveness of the two-layer protection

scheme, variances of the JTAG programs used in [6] are

created for the OpenSPARC T2. Specifically, the variances are

generated by substituting different values for the parameters

(such as the number of cycles in run-test/idle and test-logic-

reset), and by modifying the sequential orders of JTAG instruc-

tions used for reverse engineering. The new data set includes

767 normal programs, containing 125,017 opcode sequences

(extracted using a fixed-size sliding window), and 1,092 at-

tacking programs, containing 154,980 opcode sequences.

Targeted components

C1 Check basic profile C5 L2 cache access

C2 Clock control C6 Logic BIST

C3 Control register C7 Memory BIST

C4 Electronic fuse C8 Shadow scan

Table 2: The JTAG programs are divided into eight categories,

each one targeting a different IC component.

Attacking strategies

S1 Identify the location of the JTAG ports on chip/board

S2 Identify the length of instruction register (IR)

S3 Identify the length of each data register (DR)

S4 Find the opcodes that are not associated with any DR

S5 Check if each DR can be captured/updated

S6 Identify the internal scan chains

S7 Separate opcodes into bundles based on their associated functions

S8 Determine the nature (control versus data) of each DR

S9 Investigate adjacent opcodes for characterizing interactions between them

Table 3: The JTAG programs are divided into nine categories,

each one exploiting a different scan-based attacking strategy.

An unseen scan-based attack is one that targets a different

IC component, or exploits a new scan-based strategy never

encountered by the scheme. Thus, in the first set of the

experiments, the attacking programs are divided into eight

categories based on the components they target (Table 2),

while in the second set, the programs are divided into nine

categories based on the strategies they exploit (Table 3). More

details concerning Table 2 and Table 3 can be found in [6].

For the first set of experiments, the capability to detect

attacks targeting a new IC component is evaluated using differ-

ent learning algorithms as shown in Table 4. The extracted op-

code sequences (n=4) are processed by each approach, and two

metrics are evaluated, i.e., the accuracy of identifying normal

opcode sequences (acc nor) and the accuracy of identifying

unseen attacks (acc atk). Here, accuracy is defined as the

percentage of correct predictions out of all evaluated opcode

sequences (either normal operation or unseen attacks). The

first set of approaches involve two-class learning algorithms,

namely SVM (using an RBF kernel function1), neural network

(hidden layer=1, hidden neuron=10), k-nearest-neighbor (k-

NN, k=3) and the decision tree model proposed in [6]. For

these approaches, seven out of eight categories of attacks

in Table 2 and all cases of normal operations are simulated

using 10-fold cross-validation. The resulting accuracy of iden-

tifying normal operation is denoted by acc nor. The eighth

category of the component attack is evaluated as an unseen

attack and the accuracy acc atk is measured using the ten

classifiers trained in the cross-validation. The second set of

approaches involve one-class learning algorithms, including a

one-class SVM (ν=0.1) and a one-class k-NN (radius=2). The

one-class k-NN identifies an opcode sequence by searching

for the neighboring area (radius=2) centered by the opcode

sequence. If at least one training sample resides within the

1The RBF kernel is used because it performs better than linear- and
polynomial-based kernels.

544

Authorized licensed use limited to: Zhejiang Tmall Technology Co.Ltd.. Downloaded on July 31,2021 at 04:39:43 UTC from IEEE Xplore. Restrictions apply.

Metric Algorithm (a) IC component targeted by attacks (b) Strategy exploited by attacks Overall
C1 C2 C3 C4 C5 C6 C7 C8 S4 S5 S6 S7 S8 S9

acc nor

SVM 0.876 0.885 0.876 0.874 0.896 0.876 0.878 0.875 0.876 0.903 0.868 0.886 0.879 0.869 0.878

Neural net 0.608 0.562 0.473 0.62 0.308 0.604 0.431 0.547 0.753 0.888 0.198 0.528 0.57 0.504 0.51

k-NN 0.954 0.944 0.97 0.956 0.949 0.968 0.945 0.944 0.971 0.956 0.928 0.935 0.92 0.924 0.958
[6] 0.833 0.923 0.951 0.812 0.912 0.788 0.899 0.912 0.954 0.902 0.924 0.919 0.893 0.834 0.9

1-class k-NN 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.946 0.946 0.946 0.946 0.946 0.946 0.95

1-class SVM 0.676 0.676 0.676 0.676 0.676 0.676 0.676 0.676 0.651 0.651 0.651 0.651 0.651 0.651 0.676

Match 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71

acc atk

SVM 0.77 0.855 0.985 0.97 1 0.907 0.845 1 0.877 1 1 0.843 0.994 0.986 0.911

Neural net 0.934 0.876 0.977 0.954 0.982 0.91 0.829 0.999 0.801 0.988 0.998 0.659 0.85 0.918 0.926
k-NN 0.028 0.09 0.379 0.056 0.304 0.161 0.25 0.95 0.521 0.303 0.515 0.689 0.573 0.852 0.235

[6] 0.91 0.213 0.499 0.439 0.319 0.249 0.13 0.105 1 0.94 1 0.43 0.47 0.64 0.413

1-class k-NN 0.574 0.504 0.685 0.437 0.936 0.514 0.858 1 0.349 0.945 1 0.398 0.789 0.854 0.655

1-class SVM 0.574 0.504 0.685 0.437 0.936 0.514 0.858 1 0.447 0.929 1 0.376 0.833 0.704 0.655

Match 0.538 0.751 0.964 0.916 0.993 0.79 0.772 1 0.599 0.992 1 0.762 0.973 0.942 0.835

Table 4: The accuracy of detecting normal operation and unseen attacks that (a) target different IC components and (b) exploit

different strategies are evaluated for different learning algorithms (n=4). (Each column with Ci has target component Ci of

Table 2 as the unseen attack, i.e., excluded during training. Each column with Si exploits strategy Si of Table 3 as the unseen

attack, i.e., excluded during training.) The highest accuracy for each set of comparison is in bold.

area, the opcode sequence is then labeled normal. For these

approaches, 90% of the normal opcode sequences are used

for training, while the remaining 10% are used for evaluating

acc nor. In addition, each category of the component attack

is evaluated as an unseen attack. The next approach, named

“match”, simply uses normal opcode sequences as legal ones

and rejects any opcode sequence that does not conform. It

is evaluated using similar procedures with one-class learning

algorithms, i.e., building a legal database that contains 90% of

all cases of normal operation, while using the remaining 10%

for measuring acc nor. Also, each category of the attack is

evaluated as an unseen attack.

As shown in Table 4, an SVM has balanced performance

for identifying both normal operation and unseen attacks,

indicating that the SVM can not only tolerate the variances

occurring during normal operation but also detect unseen scan-

based attacks. Among the correctly-classified unseen attacks,

0.2% are detected by Layer-I while 99.8% are classified

by Layer-II. A neural network and k-NN are capable of

identifying normal operation or an attack, but not both. The

overall performance of a one-class SVM and a one-class k-NN

is worse than an SVM, even for identifying unseen attacks. A

likely explanation for this outcome difference is that having

some general knowledge of attacks is quite beneficial for

detecting new types of attacks. The “match” approach fails

to identify variances exhibited by normal operation because

the matching rule, by definition, simply does not allow for

any variance. Finally, the decision tree model in [6] performs

much worse in identifying unseen attacks than the SVM (i.e.,

41.3% versus 91.1% overall). However, it is noted that the

decision tree performs better than the SVM for identifying

attacks targeting C1. A likely explanation is that “checking

the basic profile” of the JTAG may result in frequent easy-to-

detect mistakes because the attacker has no prior knowledge

of the specific JTAG. The approach in [6] performs better

in that situation because various features, other than only

the sequential order of instructions, are used to capture user

behavior.
For the second set of experiments, the capability to detect

attacks exploiting a different strategy is evaluated in a similar

manner as shown in Table 4. It is noted that strategies S1-S3

of Table 3 are excluded because they can easily be detected

by layer-I. The results again show that the SVM has better

overall performance than other approaches. It is noted that the

decision tree performs better than the SVM for strategy S4

due to the reasoning earlier described.
Figure 5 shows that the accuracy of identifying normal

operation and unseen attacks trends in opposite directions

when the opcode sequence length increases. The accuracy of

Figure 5 is the average accuracy of each category of attacks

weighted by the population size. Figure 5 reveals that a larger

n is preferable for detecting unseen attacks, but at the cost of

more false positives. The optimal value for n is 4 or 5 if false

positives and false negatives have equal cost. Figure 5 also

demonstrates that the length of most normal JTAG operations

is typically less than 7 or 8.
Figure 6 shows the accuracy after applying delayed labeling

for normal operation and unseen attacks. Even though the

optimal values for n dly and n th should correspond to

the highest overall accuracy, n dly should not be too large

because attackers can disguise malicious operations within a

long interval more easily. Finally, n dly=5 and n th=3 are

selected, which achieve an overall accuracy of 94%.

V. DISCUSSION

Table 5 compares the proposed two-layer scheme and other

JTAG protection techniques. When compared to encryption

techniques, the two-layer scheme is an orthogonal approach

that can be combined with encryption to achieve complement-

ing protection for the JTAG. In addition, the proposed scheme

is considered valid under the assumptions that the attacker can

only access the JTAG ports and does not know how to operate

the private JTAG functions.

545

Authorized licensed use limited to: Zhejiang Tmall Technology Co.Ltd.. Downloaded on July 31,2021 at 04:39:43 UTC from IEEE Xplore. Restrictions apply.

0.6

0.7

0.8

0.9

1

2 3 4 5 6 7 8
n (opcode sequence length)

acc_nor acc_atk

Figure 5: The detection accuracy (y-axis), as a function

of opcode sequence length (x-axis), is evaluated for normal

operation and unseen attacks.

0.5
0.6
0.7
0.8
0.9

1

1 2 3

n_dly = 3

acc_nor acc_atk

0.5
0.6
0.7
0.8
0.9

1

1 2 3 4

n_dly = 4

0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5

n_dly = 5

0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6

n_dly = 6

0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7

n_dly = 7

0.5
0.6
0.7
0.8
0.9

1

1 2

n_dly = 2

(n_th =) (n_th =) (n_th =)

(n_th =) (n_th =) (n_th =)

Figure 6: The detection accuracy (y-axis) after applying

delayed labeling, in terms of n dly and n th, is evaluated

for normal operation and unseen attacks.

Protection
techniques Vulnerability Security

level
Over-
head

Encryption Key leakage High Medium

Signature
detector

False negatives; not valid for
unseen attacks

Low Medium

Anomaly
detector

False positives Medium Medium

SLIC-J in [6]
Know private JTAG functions;

not valid for unseen
scan-based attacks

Medium Medium

Two-layer
scheme

Know private JTAG functions High Medium

Table 5: Comparison between the proposed two-layer scheme

and other JTAG protection techniques.

Further, even if the attacker knows how to operate a portion

of the JTAG functions (e.g., the public instructions), the

scheme is still effective. Specifically, to reverse other JTAG

functions, the attacker will attempt to obfuscate malicious

behavior by interleaving intrusions with already-known nor-

mal sequences. However, jumps between the intrusions and

legitimate operations make the attack easier to identify. This

claim is supported by the simulation results. Specifically,

assuming that the attacker knows how to operate the control

registers (as shown in Table 2), control register operations

(with opcode length = 2 to 9) are interleaved with attacks

that target unknown components (with opcode length = 1 to

3). In this case, the detection accuracy is 99.9%, which is even

higher than the case of no prior knowledge (97.6%).

VI. CONCLUSION

Detecting attacks based on the user behavior has become a

potential technique to ensure the security of modern integrated

systems. In this paper, a two-layer learning-based protection

scheme is proposed to detect scan-based JTAG attacks. The

experiments on the OpenSPARC T2 show that the scheme

can detect unseen scan-based attacks with high accuracy (i.e.,

94%) under the assumptions that the user can utilize the JTAG

ports to apply unseen scan-based attacks.

ACKNOWLEDGMENT

The authors acknowledge the support of the Founda-

tion for Science and Technology of Portugal under Grant

BD/28163/2006 (project reference CMU-PT/SIA/0005/2009).

REFERENCES

[1] F. Domke, “Blackbox JTAG Reverse Engineering,” Tech. Rep., 2009.
[2] I. Breeuwsma, “Forensic Imaging of Embedded Systems Using JTAG

(Boundary-Scan),” Digital Investigation, vol. 3, no. 1, pp. 32–42, 2006.
[3] Z. Basnight, J. Butts, J. Lopez, and T. Dube, “Firmware Modification

Attacks on Programmable Logic Controllers,” Critical Infrastructure
Protection, vol. 6, no. 2, pp. 76–84, 2013.

[4] M. Bushnell and V. Agrawal, Essentials of Electronic Testing for Digital,
Memory and Mixed-signal VLSI Circuits. Springer, 2000.

[5] “OpenSPARC T2,” http://www.oracle.com/technetwork/systems
/opensparc/opensparc-t2-page-1446157.html, Oracle.

[6] X. Ren, V. G. Tavares, and R. D. Blanton, “Detection of Illegitimate
Access to JTAG via Statistical Learning in Chip,” in Design, Automation
and Test in Europe, 2015.

[7] J. Da Rolt, A. Das, G. Di Natale, M. Flottes, B. Rouzeyre, and
I. Verbauwhede, “Test Versus Security: Past and Present,” Emerging
Topics in Computing, vol. 2, no. 1, pp. 50–62, 2014.

[8] “High Quality Test Solutions for Secure Applications,” Mentor Graphics,
Tech. Rep., 2010.

[9] B. Yang, K. Wu, and R. Karri, “Scan-based Side-channel Attack on
Dedicated Hardware Implementations of Data Encryption Standard,” in
International Test Conference, 2004.

[10] F. Novak and A. Biasizzo, “Security Extension for IEEE Std 1149.1,”
Journal of Electronic Testing, vol. 22, no. 3, pp. 301–303, 2006.

[11] A. Das and U. Kocaba, “PUF-based Secure Test Wrapper Design for
Cryptographic SoC Testing,” in Design, Automation and Test in Europe,
2012.

[12] K. Rosenfeld and R. Karri, “Attacks and Defenses for JTAG,” Design
& Test of Computers, vol. 27, no. 1, pp. 36–47, 2010.

[13] J. Lee, M. Tehranipoor, C. Patel, and J. Plusquellic, “Securing Designs
Against Scan-based Side-channel Attacks,” Dependable and Secure
Computing, vol. 4, no. 4, pp. 325–336, 2007.

[14] S. S. Ali, O. Sinanoglu, S. M. Saeed, and R. Karri, “New Scan-based
Attack Using Only the Test Mode,” in International Conference on Very
Large Scale Integration, no. 1, 2013.

[15] J. Dworak and A. Crouch, “Don’t Forget to Lock Your SIB: Hiding
Instruments Using P16871,” in International Test Conference, 2013.

[16] S. Axelsson, “Intrusion Detection Systems: A Survey and Taxonomy,”
Technical Report Chalmers University of Technology, Goteborg, Swe-
den, Tech. Rep., 2000.

[17] I. Yoo, “Protocol Anomaly Detection and Verification,” in International
Workshop on Information Assurance, 2004.

[18] J. M. Estevez-Tapiador, P. Garcia-Teodoro, and J. E. Diaz-Verdejo,
“Stochastic Protocol Modeling for Anomaly Based Network Intrusion
Detection,” in International Workshop on Information Assurance, 2003.

[19] M. Ringnér, “What Is Principal Component Analysis?” Nature biotech-
nology, vol. 26, no. 3, pp. 303–304, 2008.

[20] C. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.
[21] B. Schölkopf, R. C. Williamson, A. J. Smola, J. Shawe-Taylor, and

J. C. Platt, “Support Vector Method for Novelty Detection,” in Neural
Information Processing Systems, 1999.

546

Authorized licensed use limited to: Zhejiang Tmall Technology Co.Ltd.. Downloaded on July 31,2021 at 04:39:43 UTC from IEEE Xplore. Restrictions apply.

