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Abstract—Privacy preservation has become a critical concern
for governments, hospitals, and large corporations. Homomor-
phic encryption (HE) enables a ciphertext-based computation
paradigm with strong security guarantees. In emerging cross-
agency data cooperation scenarios like vertical federated learning
(VFL), HE protects the data interaction from exposure to
counterparts. However, computation on ciphertext has significant
performance challenges due to increased data size and substantial
overhead. Related work has been proposed to accelerate HE
using parallel hardware, such as GPUs, FPGAs, and ASICs.
However, many existing hardware accelerators target specific HE
operations, such as number theoretic transform and key switch-
ing, providing limited performance improvement for end-to-end
applications. Others support bootstrapping, which requires quite
a large ASIC design. To better support existing VFL training
applications, we propose SAFE, an HE accelerator for scalable
homomorphic matrix-vector products (HMVP), which is the
performance bottleneck. SAFE adopts coefficient-wise encoded
HMVP algorithm, despite a vanilla mode, we further explore the
compressed and concatenated modes, which can fully utilize the
polynomial encoding slots. The proposed hardware architecture,
customized for HMVP dataflow, supports spatial and temporal
parallelization of function units. The most costly polynomial
function, number theoretic transform, is implemented with a
low-area constant geometry unit which improve efficiency by
2.43×. SAFE is implemented as a CPU-FPGA heterogeneous
acceleration system, unleashing the multithread potential. The
evaluation demonstrates an up to 36× speed-up in end-to-end
federated logistic regression training.

Index Terms—Homomorphic encryption, hardware accelera-
tion, privacy-preserving computing, number theoretic transform,
federated learning.

I. INTRODUCTION

In the big-data era, information is increasingly used as
the driving force behind many applications. However, sharing
plaintext data can be challenging and prohibited in certain
fields, such as medical systems, banks, and governments [1].
Privacy-preserving computing aims to overcome this restric-
tion by sharing only encrypted data, thus avoiding the exposure
of sensitive information [2], [3]. In the agency-to-agency
vertical federated learning (VFL) scenarios, the two parties
have the same user community, while they reserve different
features, and only one of them knows the label. They try
to update the model with loss functions during the training

steps without exposing user data. To hide the plaintext in the
intermediate steps, homomorphic encryption (HE) is used for
exchanging information between agencies [4]–[6].

HE has the capability of computing on encrypted data,
which was first proposed by Rivest et al. in 1978, for achieving
“privacy homomorphism” [7]. Since then, cryptographers have
constructed various HE schemes to improve functionality
and efficiency [8]. Among these schemes, Brakerski/Fan-
Vercauteren (BFV)-like algorithms, including BFV [9], [10],
Brakerski-Gentry-Vaikuntanathan (BGV) [11], and Cheon-
Kim-Kim-Song (CKKS) [12]–[14] are state-of-the-art, which
have efficiency advantages on encryption, decryption and arith-
metic features. These HE schemes are based on the learning-
with-errors (LWE) problem and its ring-based variant (RLWE).
Compared to other schemes, such as the Paillier [15] and the
El-Gamal [16] cryptosystems, BFV-like schemes can execute
wide single-instruction multi-data (SIMD) operations, which
amortize the overhead by the factor of polynomial dimension
N . Regarding arithmetic functions, operations like multipli-
cation, addition, and rotation are mapped to manipulations of
LWE or RLWE ciphertexts [17].

Performing arithmetic operations on encrypted data is more
complicated than working with unencrypted data. HE typically
introduces over 104× overhead on the following aspects [18].
Firstly, besides the straightforward arithmetic, HE operations
introduce many extra key switching operations to keep data
format and modulus switching operations to control error [19],
[20]. Secondly, the polynomial ring structure of RLWE intro-
duces constraints, which require compact encoding methods to
utilize the coefficient slots and use technologies like number
theoretic transform (NTT) to reduce the overhead [21]–[23].
Thirdly, the basic integer arithmetic is transformed into mod-
ular operations in the ciphertext domain, which always costs
many clock cycles on CPU arithmetic units [24].

The performance of fully HE (FHE) becomes even worse,
which supports computation with arbitrary depth. More pre-
cisely, upon encryption, a ciphertext is associated with a
noise budget that will be consumed during computation. This
noise budget should not be exhausted to ensure decryption
correctness, meaning that only limited-depth computation is
allowed. Bootstrapping overcomes this limitation by refreshing
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the noise budget before it is about to exhaust [8]. However,
bootstrapping introduces a huge amount of computation over-
head, which usually dominates the whole computation [25],
[26].

Driven by the acceleration demands, several high-
performance hardware implementations, e.g., FPGAs, GPUs,
and ASICs, have been proposed in recent years. The FPGA-
based work targets HE operators, such as polynomial multipli-
cation and NTT [27]–[34]. The Microsoft HEAX accelerates
key switching by implementing a pipelined architecture on FP-
GAs [27]. However, accelerating key switching solely provides
limited end-to-end improvement from Amdahl’s law. GPUs
demonstrate hundreds of speed-up compared to CPUs [35]–
[40]. The bottleneck of GPU, however, resides in limited
shared memory that cannot accommodate large polynomials
and the intermediate results during HE evaluation. ASICs
achieve a tremendous performance improvement, benefiting
from the use of the high-frequency clock, high-bandwidth
memory, and dense compute logic [41]–[46]. However, hun-
dreds of megabytes of SRAM and massive logic units are
required to support the bootstrapping of FHE. Although some
FHE accelerators have about 104× speedup, the area of these
ASICs is also quite large, typically 100mm2 to 400mm2,
which incurs highly high cost.

The logistic regression (LR) model is widely used for
the VFL training task thanks to its accuracy and strong
interpretability. Compared to implementing the full process
with FHE, a more practical solution is to use HE in an
interactive manner [4] or combine HE with other techniques
such as secret sharing [5]. In both the above two solutions,
the major workload is the homomorphic matrix-vector product
(HMVP), where the matrix is the local plaintext feature, while
the vector is the interaction ciphertext. Since the feature size
varies in different training data settings, vanilla encoding mode
can not efficiently utilize the encoding space. This paper starts
from the work published at DAC 2023 [47] by incorporating
a scalable HMVP algorithm and datapath. We further evaluate
its efficiency in various settings through ablation studies.

In this work, we propose SAFE, a scalable homomor-
phic encryption accelerator for vertical federated learning.
We observe both algorithm optimization and hardware ac-
celeration are crucial in end-to-end applications. Regarding
the algorithm, we designed a novel algorithm of HMVP,
SAFE supports different types of ciphertexts (i.e., RLWE and
LWE) and the conversion between them. With this optimiza-
tion, the complexity of homomorphic MVP is reduced from
O(m log2 n) to O(m) where m and n denote the number of
rows and columns, respectively. SAFE also supports scalable
data size and encoding configurations for different n ranges.
To exploit the parallelism capability provided by FPGA, SAFE
employs a fully pipelined architecture, where each stage is
specifically designed for a maximized throughput. Further,
we design dedicated modules for NTT, polynomial processing
units, and various buffers. SAFE is implemented on the Xilinx
VU9P FPGAs and works at 300MHz.

The contributions of this work are summarized as follows.
• SAFE provides a comprehensive solution that involves

algorithm-hardware co-design. On one hand, SAFE is

designed for a secure and flexible HMVP algorithm.
On the other hand, we optimize the algorithm to align
seamlessly with the dataflow hardware architecture.

• We provide a scalable HMVP algorithm to adopt dif-
ferent training data sizes. The proposed compressed and
concatenated modes compact the raw matrix to densely
packed plaintext. After a k fold compression or concate-
nating, the total key switching complexity is reduced
by approximately k times, significantly reducing the
overhead.

• We design customized hardware architecture to achieve
high-performance HMVP. In particular, SAFE employs
a customized, fully-pipelined architecture that can ef-
fectively utilize the parallelism of FPGA. For NTT,
we propose a compute-efficient architecture that enables
pipelined data flow without bubbles. Compared to state-
of-the-art implementations [48], our NTT logic efficiency
has improved by 2.43×.

• SAFE has been deployed as a part of the CPU-FPGA
heterogeneous engines within the privacy-preserving in-
frastructure for accelerating real-world applications. We
evaluate the end-to-end latency breakdown and achieve
up to 36× speed-up for LR training.

II. BACKGROUND

This section introduces the data structure and computation
process of HE ciphertexts. We also demonstrate existing
techniques and security requirements associated with HE.

A. Homomorphic Encryption

In HE schemes, arithmetic operations over plaintext are
mapped to LWE or RLWE ciphertext manipulations. LWE
ciphertexts are lightweight and suitable for scalar arithmetic,
while RLWE ciphertexts offer enhanced efficiency for batch
processing that involves vectors and matrices.

1) The LWE Ciphertext: An LWE ciphertext consists of a
random vector a⃗ and a scalar b that are encrypted using a
secret key s⃗ as

b =< a⃗, s⃗ > +∆ · pt+ e (1)

where e is a small noise and ∆ is a lifting scalar. Only the
data owner who has s⃗ can recover the scalar pt ≈ (b − <
a⃗, s⃗ >) ·∆−1.

2) The RLWE Ciphertext: In the context of RLWE, all data
structures are over polynomial rings modulo XN + 1 where
N is a power of two. A plaintext coefficient modulus is a
prime number t such that t ≡ 1 mod 2N . An RLWE plaintext
pt(x ) ∈ Zt[X]/(XN + 1) is encrypted as two polynomials
a(x ) and b(x ) using a secret key s(x ) as

b(x ) = a(x ) · s(x ) + ∆ · pt(x ) + e(x ) (2)

where a(x ) is random, e(x ) is a small noise polynomial.
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3) The Basic Homomorphic Computations: Given an
RLWE ciphertext E(pt1(x )) = {b1(x ), a1(x )}, the result of
addition with a plaintext pt2(x ) is denoted as

E(pt1(x ) + pt2(x )) = b1(x ) + pt2(x ), a1(x ). (3)

Adding E(pt1(x )) with another ciphertext E(pt2(x )) =
{b2(x ), a2(x )} is calculated as

E(pt1(x ) + pt2(x )) = b1(x ) + b2(x ),a1(x ) + a2(x ). (4)

Similarly, the product of E(pt1(x )) with plaintext pt2(x ) is
represented as

E(pt1(x ) · pt2(x )) = b1(x ) · pt2(x ), a1(x ) · pt2(x ). (5)

In this cross-agency scenario, we avoid the costly ciphertext
multiplication operation, necessitating extra procedures like
relinearization [10], [12]. After the homomorphic computation,
the data owner who manipulates the secret key s(x ) can
decrypt the ciphertext to recover the corresponding plaintext.

B. Batched Data Encoding

RLWE plaintexts and ciphertexts consist of N coefficients
that can be used to represent a vector of data elements. Data
encoding strategies are developed to arrange the original data
with different formats and sizes. Scalars, vectors, matrices,
and tensors can be packed or tiled to fit the HE data structure.
When executing an HE operation, all the batched elements in
the ciphertext can amortize the latency to improve computation
efficiency. A batch encoder can be typically constructed in
slot-wise or coefficient-wise style.

• Slot-wise: According to the Chinese Remainder Theorem
(CRT), the plaintext space Zt[X]/(XN+1) is isomorphic
to the N -fold product of fields Zt[X]/(X − ζ) × (X −
ζ3) × · · · × (X − ζ2N−1) mod t where the constants
ζ, ζ3, ..., ζ2N−1 are all the distinct primitive 2N -th roots
of unity in integers modulo t. Each decomposed field
represents a distinct slot that accommodates an integer
message. This arrangement enables SIMD operations,
simultaneously allowing identical computations across all
plaintext slots.

• Coefficient-wise: The elements in a vector v⃗ are placed
into the coefficients of a polynomial with the specific
order as

v⃗ = (v0, v1, ..., vN ) → pt(x ) =

N∑
i=0

vϕ(i)X
i (6)

where ϕ(·) specifies a permutation over the vector ele-
ments.

The layout of data encoding plays a crucial role in
determining the computation process. For example, when
calculating the vector inner product

∑N−1
i=0 uivi in a slot-

wise fashion, the homomorphic multiplication provides in-
dividual outputs u0v0, u1v1, · · · , uN−1vN−1. These prod-
ucts are then collectively summed into a single slot us-
ing homomorphic rotation and addition. Conversely, en-
coding vector u⃗ as u0, u1, · · · , uN−1 and vector v⃗ as
v0,−vN−1,−vN−2,· · · ,−v1 allows for directly get the aggre-
gation

∑N−1
i=0 uivi at the constant coefficient.

Algorithm 1 PACKLWES

Input: RLWE ciphertexts {cti}2
l−1

i=0 in which only sparse coeffi-
cients are valid.

Output: An RLWE ciphertext ct
1: if l = 0 then
2: return ct0
3: else if l = 1 then
4: return PACKTWOLWES(1, {cti}1i=0)
5: else
6: cteven = PACKLWES({ct2i}2

l−1−1
i=0 )

7: ctodd = PACKLWES({ct2i+1}2
l−1−1

i=0 )
8: return PACKTWOLWES(l, {cteven, ctodd})
9: end if

Algorithm 2 PACKTWOLWES

Input: An automorphism index l, two sparse RLWE ciphertexts
{cti}1i=0

Output: An RLWE ciphertext ct
1: ctmono = xN/2 · ct1 ▷ Multiply by mononomial
2: ct+ = ct0 + ctmono

3: ct− = ct0 − ctmono

4: ctauto = EVALAUTO(ct−, l) ▷ Automorphism
5: return ct+ + KEYSWITCH(ctauto, l) ▷ KeySwitch

C. Packing Encrypted Scalars

The combined utilization of both LWE and RLWE ci-
phertexts significantly improves the efficiency of evaluating
homomorphic linear functions. For example, the result of
the vector inner product has only one valid coefficient as
Section II-B, hence, extracting the scalar coefficients from
multiple ciphertexts and repacking them together into a single
ciphertext is required. To unpack and repack, we apply the
method proposed by Hao Chen et al. [49] while preserving
the LWE ciphertext as a sparse RLWE structure. Generally
speaking, we extract and cast all the valid scalar coefficients
as LWE ciphertexts, which eventually would be packed in an
RLWE ciphertext as the final result. Algorithm 1 recursively
packs two sparse RLWE ciphertexts into a packed one using
Algorithm 2. A PACKTWOLWES procedure calls two critical
functions, namely EVALAUTO, KEYSWITCH in Equations 7
and 8.

For an RLWE ciphertext ct = (b(x ),a(x )), an automor-
phism with index l is defined as follows:

EVALAUTO(ct, l) = (b(x 2l+1),a(x 2l+1)) (7)

Moreover, key switching with automorphism index l is defined
as follows:

KEYSWITCH(ct, l) = (b(x ), 0) + a(x ) ·KSKl (8)

where KSKl is pre-generated, referring to the key switching
key [12] for the automorphism index l.

D. Federated Learning and Security Model

In this work, we adopt a two-party coordinator-assisted FL
training model [4], [6] as Fig. 1, where agency A and B share
aligned record rows. The two parties owns different features,
i.e. agency A stores the XA and the label y, while agency B
stores XB . The FL-variant logistic regration training protocol
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Coordinator

Local data
XA, y

[w]= f (θ,[m],XA,XB, y)

[zA ] = XA [w] [zB ] = XB [w]

Agency A and B
reserve different

features for the same
entity samples Local data

XB

θ, [m]

[zA ] [zB ]

Security boundary  Security boundary θ, [m]
Agency A Agency B

① ①

②
③ ③

④ ④

Fig. 1. The overall workflow of cross-agency VFL.

is executed around all the records, in which each iteration
works with one mini-batches and updates the weight parame-
ters with a HE-based gradient aggregation accrodingly [4]. The
coordinator broadcasts the initial weight θ and an encrypted
mask [m] to the participants in each iteration. Then step 2⃝
negotiates an intermediate ciphertext [w]. Step 3⃝ multiplies
the local plaintext feature matrix with the ciphertext [w] to
calculate the gradient [zA] and [zB ], which are fed back to
the coordinator in step 4⃝. In this scenario, we evaluate the
HMVP in step 3⃝ taking over the major overhead (evaluated
in Section VII-C), which is a strong motivation to design
accelerators.

We assume the participants are honest-but-curious. In other
words, while A and B try to learn as much as possible from
the received data, they honestly follow the prescribed protocol.

E. Encryption Parameters

The selection of encryption parameters, i.e., polynomial
degree N and CRT decomposed moduli qi, is based on
the required security level and plaintext space. In particular,
complex operation flows and large plaintext spaces require
large encryption parameters. However, increasing HE param-
eters significantly elevates complexity. In this work, we select
N = 212 for the lowest computation overhead satisfying
the security requirements. This corresponds to a space of
109 bit where 70 bit, corresponding to two moduli, is used for
representing plaintext and ciphertext, while the other 39 bit is
used as a special modulus for key switching.

III. SCALABLE HMVP ALGORITHMS

In HMVP tasks, the feature size varies in exact applications,
which may not fit exactly with the polynomial encoding size.
In this section, we present our efficient and flexible algorithm
for HMVP. This technique enables SAFE to accommodate
varying sample counts and feature sizes across diverse con-
figurations.

A. Homomorphic Matrix-Vector Product

We observe that the naive homomorphic inner product in-
curs a cost of O(log2 n) KEYSWITCH, as each homomorphic
rotation requires one KEYSWITCH. In contrast, the coefficient-
wise encoded inner product has two advantages, including free

Algorithm 3 Coefficient-wise encoded HMVP
Input: A matrix Am×n coefficient-wise encoded as pt1 ∼ ptm,

and a ciphertext v corresponding to a coefficient-wise encoded
vector v⃗

Output: A ciphertext u corresponding to vector u⃗ = A · v⃗
1: for i← 1 to m do
2: ci ← pti × v ▷ S1: Inner product
3: li ← EXTSCALAR(ci) ▷ S2: Extract scalar
4: end for
5: u← PACKLWES(l1, ..., lm) ▷ S3: Rec. Pack2LWEs

Mv0 D00 D01 D02

-D11 -D12 Mv1 D10

Mv0

-D11

D01

+Mv1

Mv0

+D11

D01

-Mv1

Mv0 Mv1

Mv0 D00 D01 D02

D11 D12Mv1 D10

➕

➖
XN/2

mod XN+1

Add and

Scale 1/2

Mv0

+D11

-D01

+Mv1

EvalAuto & KeySwitch

v0
-v3
-v2
-v1
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Mv1

Mv2

Mv3

PackTwo

LWEs

M00 M01 M02 M13

M10 M11 M12 M13

M20 M21 M22 M23

M30 M31 M32 M33

✖️

PackTwo

LWEs

Mv0 Mv1

Mv2 Mv3

PackTwo

LWEs Mv0 Mv2 Mv1 Mv3

PackTwoLWEs

Poly_0

Poly_1

(a) Coefficient-wise encoded HMVP.

v0
0
0
-v1

Mv0 Mv1

Mv2 Mv3

M00 M01 M10 M11

M20 M21 M30 M31

M00 M01

M10 M11

M20 M21

M30 M31

✖️
PackTwo


LWEs Mv0 Mv2 Mv1 Mv3

(b) The Compressed variant.

v4
-v7
-v6
-v5

M00 M01 M02 M13
M04 M05 M06 M07

Mv0a
Mv0b

Mv1a
Mv1b

Mv0

Mv1
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-v3
-v2
-v1

M10 M11 M12 M13
M14 M15 M16 M17
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LWEs✖️

Accum
ulate

(c) The Concatenated variant.

Fig. 2. The schematic HMVP examples where the polynomial coefficient
number is set to 4. We analyze the workflow for different data sizes when (a)
n = N , (b) n = N/2 and (c) n = 2N .

of the costly encoding which requires FFT, and the complexity
is only O(1). When performing an HMVP algorithm, which
multiplies a local plaintext matrix by an encrypted vector, as
shown in Alg. 3, the complexity can be reduced to O(m).
When compared to the diagonal encoding in [50] whose
complexity is also O(m), Alg. 3 is still faster because it
employs a much simpler encoding method.

The computation process consists of three steps, namely i.e.
S1 ∼ S3. The S1 step involves performing a homomorphic
vector inner product between a row of a matrix and the
ciphertext. In the S2 step, a valid LWE ciphertext result is
extracted. Finally, in the S3 step, the multiple LWEs are
repacked into a single RLWE ciphertext. This computing
process guarantees only the key owner can recover the result
vector from the ciphertext.

Fig. 2(a) shows a N = 4 case study where the PACKLWES
consist of 3 PACKTWOLWES steps. The scalar results are
arranged in different coefficients within each PACKTWOLWES
block to avoid data overwriting. To achieve this, polynomial
Poly 1 is shifted and rounded by N/2. Furthermore, the dirty
data (i.e. D01, D11) obstruct the final result so that Poly 0 and
Poly 1 can not be accumulated directly. The automorphism
flips the coefficient of D01−Mv1 to eliminate invalid data. As
the key changes, a KEYSWITCH must be introduced to ensure
correctness after decryption.

Moreover, Algorithm 3 can be applied to more linear
functions, such as 2-D and 3-D convolutions, through encoding
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the original tensors in similar ways [51]. In the cross-agency
model training scenario, the column is the number of features,
likely not matched with the polynomial size. A naive idea is to
expand the original vector by zero-padding. i.e. packing each
row vector in plaintext.

B. The Compressed HMVP

The polynomial degree is at least 4096, as smaller param-
eters cannot support high-precision KEYSWITCH. However,
zero-padding results in efficiency loss when n ≪ N . SAFE
proposes a compressed HMVP variant that encodes multiple
rows in a single plaintext.

In Fig. 2(b), where n = N/2, we first compress every two
rows into a single long vector. In this way, the total row
number can be half of the original matrix. The encrypted
vector is arranged as v⃗ = v0, 0, 0,−v1. The intermediate
value of the inner product has two valid coefficients, namely
u0X

0 = M00X
0 ·v0X0+M01X

1 ·−v1X
3 mod (X4+1) and

u1X
2 = M10X

2 · v0X0 + M11X
3 · −v1X

3 mod (X4 + 1).
During the PACKLWES stage, the overall complexity of
KEYSWITCH reduces from m−1 in vanilla mode to m/2−1.
With this technique, a smaller feature size will enable higher-
fold compression, further reducing the overhead.

C. The Concatenated HMVP

When the feature size has more items than 4096, a naive
idea is to enlarge the parameter sets, i.e. N , to encode one row
in a polynomial. Nevertheless, enlarging N causes a drop in
efficiency since the complexity of NTT and INTT is superlin-
ear. A HMVP task could also be vertically decomposed into
small tasks, i.e., performing M (m×n)v⃗ with two M (m×n

2 )v⃗.
Nevertheless, the overall computation overhead increases to
2(m− 1).

SAFE explores the concatenated HMVP mode where two
rows are combined to form a long vector. In the case where
n = 2N , as shown in Fig. 2(c), every two adjacent rows
represent a full-length vector. This allows us to accumulate
the polynomial multiplication results after the inner product.
As a result, the total complexity of KEYSWITCH is only m−1,
even for larger columns.

IV. PROPOSED MICROARCHITECTURE DESIGN

SAFE uses a customized microarchitecture enhanced with
spatial and temporal parallelization to improve the perfor-
mance. The compute engine uses a fully pipelined architecture
to accelerate coefficient-wise encoded HMVP tasks. We also
comprehensively analyzed computation intensity to determine
the appropriate kernel granularity.

A. The Parallelized Hardware Design

SAFE can divide an HMVP task of size M (m×n)v⃗ into
l smaller tasks of size M (m/l×n)v⃗. The partial products of
these smaller tasks can be combined using simple homomor-
phic addition operations without introducing any KEYSWITCH
overhead. We can take advantage of this property to re-
duce the overall latency by using parallel compute engines.

The design of a compute engine contains three modules as
depicted in Fig. 3, i.e., INNERPRODUCT, EXTRACTLWES,
and PACKTWOLWES. These modules are further divided
into smaller functional units (FUs). SAFE instantiates parallel
FUs according to the HE data structure. As implied by the
encryption parameters in Section II-E, each ciphertext contains
two 35 -bit moduli and an extra 39 -bit modulus for reducing
noise. This means that each plaintext and ciphertext contains
three and six polynomials respectively. The error introduced
by homomorphic operations is eliminated in the MODSWITCH
unit, after which the 39 -bit modulus is drop off.

INNERPRODUCT is performed using a simple polynomial
multiplication. Since the computation of polynomial multipli-
cation involves a convolution, we transform the input matrix
and vector to the NTT format such that the convolution
becomes a coefficient-wise multiplication [52]. The design of
NTT and INTT FUs employs a pipeline microarchitecture
that will be elaborated in Section V-A. After the polynomial
multiplication, we use a MODSWITCH to reduce the error in
the ciphertext. In particular, the accumulation buffer stores
temporary data in the concatenated HMVP dataflow.

The output of INNERPRODUCT is then supplied to the
EXTRACTLWES module. Since the valid result is located in
coefficients as Fig. 2, this step extracts new LWE ciphertexts
from the RLWE ciphertext. The LWE ciphertexts are stored
as sparse RLWE ciphertexts and sequentially fed into the
following PACKLWES step.

As indicated by Algorithm 1, PACKLWES is applied using a
reduction tree where each node involves the function of PACK-
TWOLWES. Hence, the reduction tree is implemented using
a single PACKTWOLWES module that takes two ciphertexts
as input and reduces them into one. The input ciphertexts
come from either the preceding modules, i.e., EXTRACTL-
WES, or the reduce buffer used for storing intermediate
reduction results. In particular, once the intermediate reduction
results are ready for the next-level reduction, they preempt
the pipeline and stall the execution of INNERPRODUCT and
EXTRACTLWES. The extra modulus is introduced before the
NTT based KSK multiplication to tolerate the noise. The KSK
is preloaded to the on-chip buffer in the NTT format. Thanks to
the small parameter settings, the hardware volume is sufficient
to accommodate the full KSK.

B. The Fully-pipelined Dataflow

The design of a compute engine employs a fully-pipelined
architecture. Here the pipeline refers to the macro-pipeline,
meaning that each stage endures thousands of clock cycles.
For example, the INNERPRODUCT module is divided into
four stages as indicated by Fig. 3. The FUs within the
EXTRACTLWES module, however, reside in the same pipeline
stage with the MODSWITCH unit because the coefficient-wise
datapath is easy to combine. The PACKTWOLWES module,
corresponding to Algorithm 2, contains the most number of
pipeline stages, where KEYSWITCH takes up five of them
(i.e., from P5 to P9). The MULTMONO and AUTOMORPH
merge into a single stage because their execution can be easily
overlapped as Section V-B.
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To maximize module utilization, we carefully determine the
number of FUs and the parallelism inside each FU to make all
pipeline stages have similar latency. We define the parallelism
(P ) of a stage as the product of the number of FUs in the stage
(nf ) and the parallelism inside the FU (pf ), i.e., P = nf × pf .
Take the P2 stage (with six MULTPOLY units) and the P3
stage (with six INTT units) in the INNERPRODUCT module as
an example. Considering that P2 involves 6× less complexity
than P3, the ideal parallelism of P2 should be 6× smaller than
the parallelism of P3, i.e., P3 = 6P2, for a balanced latency.

C. Architectural Roofline Model

We plot the roofline model for SAFE based on the Xilinx
VU9P FPGA in Fig. 4. The measured operation refers to
39 -bit integer modular multiplication that utilizes 5 DSP
slices on FPGA. Fig. 4 reveals that the performance of fine-
grained low-level compute kernels is restricted by memory
bandwidth since they show poor arithmetic intensity. For
HMVP acceleration, utilizing the data locality to reduce mem-
ory access and increase compute intensity brings significant
benefits. All three work modes discussed in Section III are
compute-bound. Based on this observation, the design of
SAFE focuses on accelerating HMVP operations instead of
smaller HE operations. An additional advantage of our FPGA
solution is that it does not require expensive high-bandwidth
memory (HBM). Instead, our use of off-the-shelf DDR mem-
ory successfully meets the application’s requirements.

Algorithm 4 Constant-geometry forward NTT
Input: Polynomial a(x ), and twiddle factors stored in ω2N [log2 N ·

N/2].
Output: a(x ) = NTT(a(x )) in bit-reversed order

1: for i← 0 to log2 N do ▷ i is stage index
2: for j ← 0 to N/2 do ▷ j is butterfly index
3: ωij = ω[i ·N/2 + j] ▷ Fetch factor
4: a(x )2j = a(x )j + a(x )j+N/2 · ωij ▷ Butterfly
5: a(x )2j+1 = a(x )j − a(x )j+N/2 · ωij

6: end for
7: if i ̸= logN − 1 then
8: a(x ) = a(x )
9: end if

10: end for

V. OPTIMIZING THE FUNCTIONAL UNITS

In this section, we elaborate on the design of the FUs,
including NTT units and polynomial processing units.

A. NTT and INTT Units

The NTT is a generalization of the discrete Fourier trans-
form (DFT) to finite fields. The NTT enables fast convolu-
tion on integer sequences without any round-off errors, and
therefore it is useful for multiplying large polynomials. In
particular, the multiplication of polynomials a(x ) and b(x )
is performed by

c(x ) = INTT(NTT(a(x )) ◦ NTT(b(x ))) (9)

where “◦” refers to coefficient-wise multiplication. The
NTT algorithm works in various forms, e.g., constant-
geometry [53], [54] and in-place [27], [55]. Algorithm 4
shows a constant-geometry NTT. The outer loop divides the
computation of NTT into log2 N stages, while each stage
consists of N/2 butterfly operations. The memory access
pattern remains the same for all stages, as the read and write
addresses (lines 4 to 5) are independent of the stage index.

As Algorithm 4 implies, the NTT operation can be highly
parallelized. The number of butterfly units (BFUs) affects both
performance and hardware utilization. First, the N/2 butterfly
operations in each NTT stage are independent of each other,
such that they can be easily parallelized with the number of
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Fig. 5. The NTT datapath with four parallel BFUs when the number of
coefficient N=32.

BFUs (nbf ) equals 2s, where s is an integer. To support high
parallelism, a polynomial needs to be stored in as many RAM
banks as the value of nbf . Therefore, each bank only stores a
few data while the rest of the volume is wasted. Although
a larger nbf indicates higher parallelism, we find a sweet
point when preserving on-chip RAM from under-utilization.
We further propose the following three optimizations.

1) Parallel constant-geometry dataflow: This work stores
a polynomial in 8 round-robin RAM banks. NTT is exe-
cuted in a ping-pong fashion, as shown in Fig. 5. More
precisely, the polynomial coefficients are read from RAM-
0 and written to RAM-1 during the odd stages, while the
coefficients are then read from RAM-1 and written to RAM-0
during the even stages. Therefore, the NTT process requires
(N/2 · log2 N)/ntf clock cycles. In this work, we set nbf = 4
to access all RAM banks in parallel.

The consecutive coefficients of a polynomial are stored
across RAM banks, i.e. the coefficients [0] ∼ [7] are stored
in the address 0, such that all 1R1W banks can be read
and written simultaneously. The coefficients are read in an
interlaced order (i.e., [0] ∼ [7], [N/2] ∼ [N/2+7], [8] ∼ [15],
..., [N − 8] ∼ [N − 1]) and written in ascending order (i.e.,
[0] ∼ [7], [8] ∼ [15], ..., [N − 8] ∼ [N − 1]). This read-write
fashion ensures a fixed interconnection between the NTT units
and the RAM banks. The SWAP unit reorders the coefficients
read by a BFU to reserve the constant geometry feature.
For example, the unit of SWAP-0 exchanges the positions of
coefficients [4] and [N/2].

2) Storage and utilization of twiddle factors: Fig. 6 unroll
all the log2 N ·N/2 twiddle-factors used in the NTT process.

BFU0 [1] [1] [1] [1]
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Fig. 6. The arrangement and utilization of twiddle factors for N=32, where
[·] represents bit-reversed twiddle-factor indices.

The highlighted squares are essential factors, while others are
repetitive. We use a customized data arrangement in which
twiddle factors for stages 2 ∼ log2 N can be stored in four
N/4-depth RAMs. The factor used in stage 1 is hard-coded
as a constant. This optimization reduces the total volume re-
quirement from log2 N ·N/2 to N . During the NTT executing
process, an address generator fetches the corresponding index.
SAFE assigns each BFU a separate ROM bank, eliminating the
need for cross-bank data scheduling. Moreover, all NTT and
INTT modules in the architecture execute synchronously, thus
the twiddle factors can further share across a compute engine.
We also noticed a new NTT design that requires only 1.5N
coefficients memory capacity [56]. However, its data input and
output must be distributed across two memory clusters, which
is incompatible with our fully pipelined architecture.

3) Customized optimization for modular reduction: Mod-
ular multiplication is the most important but complicated
operation in HE. We achieve significantly simplified modular
arithmetic by pre-defining a finite field over a modulus with
low-hamming weight. Each modulus has only three non-zero
bits, such that multiplication by them can be simplified as
shifts and additions. Following the security model described
in Section II-E, we choose the prime numbers

q0, q1, p = 234 + 227 + 1, 234 + 219 + 1, 238 + 223 + 1 (10)

As described in Section IV, the implementation of SAFE
involves separate NTT or INTT units. To save on-chip logic,
we design NTT and INTT units respectively, instead of using
a unified one. An INTT unit has a similar micro-architecture
as the NTT, except that it uses Gentleman-Sande butterfly and
includes a step of post-scaling by the factor of N−1 [57].

Previous work has proposed several implementations for
NTT. For example, F1 proposes an ASIC-based prototype [41],
but the (

√
N ×

√
N)-element memory block required by

its NTT design is hard to be applied to FPGAs. Another
work, HEAX proposes an FPGA-friendly design with careful
utilization of the block RAMs [27]. Nevertheless, HEAX
handles the stage-variant memory access pattern with many
multiplexers.

B. Polynomial Processing Units (PPUs)

Beyond NTT and INTT, the other FUs, including MULT-
POLY, RESCALE, MULTMONO, and AUTOMORPH, are based
on polynomial arithmetic. Hence, we design PPUs to support
these functions. From the implementation perspective, the
coefficients of a polynomial are stored in a coefficient-vector
data structure, and all polynomial operations are carried out
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in a vectorized fashion. For this reason, both LWE ciphertext
(composed of a vector and a scalar) and RLWE ciphertext
(composed of polynomials) can be well supported by a unified
data structure for both polynomials and vectors.

Table I lists the polynomial arithmetic implemented in
SAFE. MODADD and MODMUL perform coefficient-wise
modular additions and multiplications. REV reverses the order
of the polynomial coefficients. SHIFTNEG, serving as an
underlying function for MULTMONO, is implemented as a
circular shift followed by a negation of the wrapped-around
coefficients. AUTOMORPH is implemented as a coefficient
permutation without arithmetic overhead.

TABLE I
THE POLYNOMIAL ARITHMETIC SUPPORTED BY SAFE.

Functions Details

MODADD(A,B) [a0 + b0, a1 + b1, ..., aN−1 + bN−1]
MODMUL(A,B) [a0 × b0, a1 × b1, ..., aN−1 × bN−1]
REV(A) [aN−1, ..., a1, a0]
SHIFTNEG(A, s) [aN−s, ..., aN−1,−a1, ...,−aN−s−1]

AUTOMORPH(A, k) ai → (−1)⌊ik/N⌋aik mod N

Note: A = [a0, a1, ..., aN−1] denotes the coefficients of a polynomial.

Based on the functions listed in Table I, we design PPUs
for the aforementioned pipeline. A PPU consists of an address
generator and computation logic. The address generator aims
to rearrange the coefficients required by REV, SHIFTNEG and
AUTOMORPH, while the computation logic aims to handle
modular arithmetic, with modular addition, subtraction and
multiplication as its building blocks.

As mentioned in Section IV, the pipeline stages contain
either PPUs or NTTs/INTTs. The NTT module latency with
4 PEs is larger than the coefficient number N . To minimize
area while ensuring at least the same throughput as the NTT,
PPUs can be executed serially. We assign one PPU for each
scalar-polynomial or polynomial-polynomial operation in each
pipeline stage. All PPUs are executed in parallel, while each
PPU outputs one coefficient per cycle. On the AUTOMORPH
function, compared with the 2D solution with row-wise and
column-wise permutation and multi-stage transpose in F1 [41],
our low-area solution only consumes a simple reorder logic.

C. On-Chip Memory Architectures

The Xilinx VU9P FPGA, equipping with approximately
9.4MB block RAMs and 33.7MB ultraRAMs (URAMs),
can store at most 404 ciphertexts. These RAMs are properly
separated for storing input/output polynomials, twiddle factor,
intermediate results (i.e., pipeline buffer and reduce buffer),
and key-switch key (i.e., KSK buffer). The twiddle factors
buffer and the pipeline buffer, frequently used during the whole
computation, are implemented using block RAMs, while the
KSK buffer (4.5MB) and the reduce buffer (320KB), used
less frequently, are implemented using URAMs.

SAFE allocates pipeline ping-pong buffers for data commu-
nication between neighboring pipeline stages. Fig. 7(a) shows
how a double ping-pong buffer works. In particular, during
the T -th time slot, Stage 1 writes to Buffer A and Stage 2
reads from Buffer B (corresponding to Mode A); then during

Buf A

Buf B
Stg 1 Stg 2

Buf A

Buf B
Stg 1 Stg 2

0RGH�$ 0RGH�%

(a) Double ping-pong buffer.
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(b) Triple ping-pong buffer.

Fig. 7. The ping-pong buffers used in SAFE cross-stage data transfer.
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Fig. 8. The heterogeneous system of SAFE.

the (T+1)-th time slot, Stage 1 writes to Buffer B and Stage
2 reads from Buffer A (corresponding to Mode B). When a
pipeline stage needs to read and write a buffer during the
same time slot, a triple ping-pong buffer is used, as shown
in Fig. 7(b). By using ping-pong buffers, the pipeline stages
can start execution immediately upon arrival of the start signal
without any data copy. Besides, using buffers in the ping-pong
fashion is also efficient because all ping-pong buffers remain
in use when the pipeline stages are busy.

VI. SYSTEM DESIGN AND IMPLEMENTATION

SAFE is a heterogeneous system that consists of a CPU and
an FPGA, connected through the Peripheral Component In-
terconnect Express (PCIe) bus. Our custom-developed FPGA
board is designed to offload tasks from the CPU, thereby
reducing its overhead and enhancing the overall quality of
service. We also developed a software stack comprising run-
time and driver to facilitate the use of high-level applications.
Then we elaborate on the FPGA implementation with resource
utilization and its breakdown.

A. Heterogeneous Computing System

Figure 8 shows that SAFE is instantiated on the FPGA
accelerator with 4-channel DDR4. When the CPU program
needs to evaluate HMVP, it splits the matrix into supported
size and checks if the FPGA is idle. Once the FPGA idles,
the host CPU will send data to the DDR4 device memory on
the PCIe board, configure the SAFE IP status registers, and
trigger the kernel execution. Once the execution is completed,
SAFE sends an interrupt to the host CPU.
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We interleave computation and data transfer between FPGA
and CPU to maximize utilization of the computation units on
SAFE. One complete task comprises two parts: the host side
and the FPGA side. We pipeline the data transfer and encoding
using multiple threads on the host side. On the FPGA side, we
use split buffers for the input and output data corresponding to
each thread. Figure 9 illustrates how this pipeline mechanism
works in the case of different numbers of CPU threads and
SAFE compute engines.

An FPGA-based acceleration solution is cost-effective for
achieving a high return on investment (ROI). Many cloud ser-
vice providers already have legacy FPGAs in place, and using
FPGAs offers significant performance advantages. In contrast,
utilizing CPU multi-threading can potentially compromise
service quality, as it may lead to performance degradation
due to thread contention and frequency reduction from AVX
acceleration.

FPGAPCIeCPU PCIe
(a) 1 thread on CPU, 1 compute engine on FPGA

FPGAPCIeCPU PCIe
FPGAPCIeCPU PCIe

(b) 2 threads on CPU, 1 compute engine on FPGA

FPGAPCIeCPU PCIe
FPGAPCIeCPU PCIe

FPGAPCIeCPU PCIe
FPGAPCIeCPU PCIe

(c) 4 threads on CPU, 2 compute engines on FPGA

Fig. 9. An illustration for the pipelined execution of multi-thread CPU and
hardware compute engines.

B. Software Stack

For the data-center scenarios, FPGAs are available as PCIe-
based accelerator cards. The application will invoke the SAFE
IP through the runtime and driver from the host CPU. The
runtime handles the memory allocation, task dispatching, and
scheduling. We define two runtime Application Programming
Interfaces (APIs). One is for loading metadata (i.e., KSK) to
the FPGA board, and the other is for starting the execution of
homomorphic MVP. The user can bypass the metadata loading
API call if multiple MVPs use the same KSK set.

C. Implementation

SAFE is implemented in FPGA mounted on peripheral
logic, i.e., shell. To integrate with the shell, SAFE is packaged
with two Advanced Extensible Interface (AXI) interfaces. One
is AXI master for data transfer, and the other is AXI-lite
slave for control. The PCIe Gen3 ×16 connects the FPGA
platform to the host CPU. The bandwidth of the PCIe can be
up to 16GB/s while the attainable peak bandwidth is about
12GB/s. The Xilinx QDMA IP enables data transfer via the
PCIe. In the control path, we define 16 32-bit configuration
registers for controlling IP behavior, configuring the HMVP
command, and specifying the input/output data addresses, as
listed in Table II.

TABLE II
CONFIGURATION REGISTERS.

Type # Width Usage

Control 3 32bit IP status, IP run command, reserved for test
Config 5 32bit matrix/vector size, compute mode

Address 4 64bit base address of KSK/matrix/vector/output

TABLE III
RESOURCE UTILIZATION ON THE XILINX VU9P FPGA.

Module LUT FF BRAM URAM DSP

Compute Engine 0 259, 318 89, 894 640 294 986
Compute Engine 1 259, 502 90, 043 640 294 986

Platform 234, 066 302, 670 278 7 14
Total* 63.68% 20.41% 72.13% 61.98% 29.04%

* Measured by percentage of the total FPGA resource.

We set up a prototyping system with Intel Xeon Gold
6130@2.1GHz and Xilinx VU9P FPGA. The benchmarks
listed in Section VII are also evaluated based on this system.
Moreover, we implement two SAFE compute engines in
the FPGA board to achieve better performance. The SAFE
floorplan in Figure 10 shows two computing engines. To
balance the utilization rate of BRAM, URAM, and look-up
table (LUT), we make a fine-grained tuning to optimize all
these percentages below 75%. The final resource utilization is
shown in Table III.

VII. PERFORMANCE EVALUATION

SAFE is implemented at 300MHz. We evaluate the per-
formance with a variety of benchmarks and task settings. The
baseline performance on CPU and GPU mentioned in this sec-
tion are evaluated based on Intel Xeon Gold 6130@2.1GHz
with the SEAL v3.5 [58] and NVIDIA Tesla V100@1.29GHz
with CUDA library1, respectively.

A. Comparisons on Functional Performances

In Table IV, we present the latency, resource utilization, and
efficiency of the NTT and INTT units, which are the most
time-consuming components. We explore three implementa-
tion strategies for the twiddle-factor ROMs and the NTT local
buffer by a flexible allocation of block RAMs (BRAMs) or
LUT-based distributed RAMs (dRAMs).

Besides, we compare our implementation to existing work,
i.e., HEAX [27], F1 [41] and Medha [48]. The NTT module
of HEAX consumes the same clock cycles as this work. Nev-
ertheless, SAFE is more compact due to the use of hardware-
friendly moduli and constant-geometry dataflow. In addition,
SAFE achieves high throughput because it has a total number
of 60 NTT units, which can achieve 2× throughput and
better ATP efficiency under the same N = 212 settings than
HEAX. F1, a high-performance implemented on ASICs, shows
a significant advantage in performance. The NTT module is
too large on the FPGA platform, causing more than 100%
DSP slices to be consumed when instantiating the modules.
Medha [48] is one of the state-of-the-art accelerators that

1https://github.com/vernamlab/cuFHE
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Fig. 10. Floorplan result of SAFE based on Xilinx VU9P FPGA.

support general HE operations over polynomial degrees N =
214 and 215. On LUT efficiency, SAFE is 2.43× better than
Medha. This is because the NTT unit has simplified control
logic and data path with dedicated moduli.

TABLE IV
COMPARISON OF A SINGLE NTT MODULE.

Accelerator Latency #Mult. ATP1 LUT2 BRAM ATP1

(l) (p) (l × p) (u) (l × u)

SAFE (BRAM only) 6144 4 1× 3324 14 1×
SAFE (BRAM+dRAM)3 6144 4 1× 6508 6 1.96×
SAFE (dRAM only) 6144 4 1× 9248 0 2.78×
HEAX [27] 6144 4 1× 22316 11 6.71×
Medha [48]4 7200 16 1× 32214 32 2.43×
F1 [41] 202 896 7.36× - - -

1 Area-time product is normalized.
2 SAFE deploys on Xilinx FPGAs with 6-input LUTs and 36 kbit

BRAMs, while HEAX deploys on Intel FPGAs with 8-input LUTs
and 20 kbit BRAMs.

3 Twiddle-factor ROM uses dRAM, and the local buffer uses BRAM.
4 Medha uses the parameter N=214. We have normalized ATP by a

computational complexity factor of 4.67 for a fair comparison.

B. Evaluations on HMVP

We conduct ablation studies on row and column numbers
and analyze the effect on data size, computation overhead, and
overall task acceleration.

1) On The Data Size: We measure the size of data, i.e.,
the plaintext matrix and the encrypted vector, transferred
between the CPU and the FPGA via PCIe. As discussed
in Section III, the scalable HMVP algorithm enables the
compression of multiple rows into a single plaintext, thereby
effectively reducing the data size.

Fig. 11(a)∼ 11(f) demonstrates the total plaintext and ci-
phertext size corresponding to various task parameters. We first
fix the row numbers as 64, 256, and 1024 in Fig. 11(a)∼ 11(c).
The data size of the vanilla coefficient-wise encoded HMVP
is kept the same despite the small column number since the
padding introduces an extra dummy. The proposed compressed
mode shrinks the size by packing multiple rows into one
plaintext, reducing the number of encoded plaintexts to a
minimum of one. Then we fix the number of columns and
find that the data size is linearly related to the row number as
Fig. 11(d)∼ 11(f). The compressed mode reduces about 64×,
16×, and 4× for column settings 64, 256, and 1024.
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Fig. 11. The performance analysis of SAFE for different HMVP parameter
settings.

2) On The Computation Latency: As we analyzed in Sec-
tion III, the computation overhead depends near-linearly on
the number of rows m of the matrix. Given the fixed row
number in Fig. 11(g)∼ 11(i), the latency keeps constant in
the vanilla mode since the plaintext number equals the row
number. In contrast, the compressed mode reduces the latency
because the plaintext number is reduced to m/k, where k is
the compression degree. The computation latency is reduced in
the compressed mode for different row numbers, particularly
when the row number is large in Fig. 11(j)∼ 11(l). This is
due to data preparation and pipeline filling dominance when
the row number is very small. When the column is larger than
4096 as Fig. 11(m)∼ 11(n), the concatenated modes reduce
the computation overhead by 2× and 4×, respectively.

3) On the HMVP Full Task Acceleration: We evaluated the
full HMVP on a CPU-FPGA platform, measuring the latency
and throughput as shown in Figure 12. In Figure 12(a)(b),
we compared SAFE to the CPU baseline and observed a
significant offloading of computation to the FPGA, resulting
in a speed-up of over 10×. Furthermore, when compared to
the cuFHE implementation on V100 GPU, SAFE exhibited ap-
proximately 0.3× to 0.7× latency as shown in Figure 12(a)(b)
and 4.5× throughput as Figure 12(c). Notably, the throughput
showed a near-linear scaling with the m in the matrix.
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Fig. 12. Performance comparison for HMVP.

C. Performance on End-to-End LR Training
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Fig. 13. Performance comparison for LR training under 10Mbps network
settings.

We then evaluate the performance for heterogeneous logistic
regression (HeteroLR) where data is partitioned vertically
across parties [4]. The HeteroLR carries out a sample align-
ment process for identifying overlapping samples owned by
the two parties before training. The federated model is then
built based on those overlapping samples as Section II-D. Both
agencies A and B need to compute the HMVP. The framework
of Federated AI Technology Enabler (FATE) originally uses
Paillier, a semi-HE algorithm [15]. In this work, we replaced
Paillier with BFV for better algorithm and hardware accelera-
tion. Moreover, if combined with mini-batch and matrix tiling
techniques, our algorithm can support data of any scale and
be deployed in multiple hardware accelerators.

We evaluate the HeteroLR performance using datasets of
varying sizes under 10Mbps network settings, as shown in
Figure 13. SAFE significantly reduces the computation over-
head of the major step in HeteroLR. As a result, the end-to-
end HeteroLR computation was accelerated by 2.3× to 36×.
It is worth noting that cases involving large matrices (e.g.,
8192 × 4096 and 8192 × 8192) exhibited a higher speed-
up. This is primarily due to the overhead between HMVP
computation and communication in the overall process. We
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Fig. 14. Various design decisions are explored to select the best-performed
designs that fit the FPGA.

recommend using larger datasets to fully leverage the hardware
acceleration capabilities.

D. Design Space Exploration

We thoroughly explored the design space for implementing
HMVP, considering various factors such as pipeline splitting,
the number of compute engine modules, the parallelism of
each FU, and buffer size. The results of our exploration are
illustrated in Figure 14, where each design choice is positioned
based on its performance and resource utilization. From the
plot in Figure 14, we identified two optimal design choices: (9-
stages, 1×PACKTWOLWES, 6×NTT, 4-PE NTT, 2×compute
engines) and (9-stages, 1×PACKTWOLWES, 6×NTT, 8-PE
NTT, 1×compute engine). SAFE corresponds to the first
design choice, which facilitates parallel compute engines. It
is important to note that, to maximize overall performance, all
pipeline stages have similar latency and throughput.

VIII. RELATED WORK

A. FHE accelerators

Defense Advanced Research Projects Agency (DARPA)
deems FHE to be one of the most promising techniques for
the future. In particular, they expect that by the year 2025,
computation on ciphertext will be as fast as that on plaintext
due to the improvement of the FHE algorithm and the develop-
ment of highly parallel hardware [59]. CraterLake [43] builds a
vector processor in a commercial 14/12nm process. It supports
ResNet-20 and simple training tasks using a VLIW instruction
architecture. ARK [45] develops a 7nm FHE accelerator that
balances the memory overhead by on-the-fly computing and
data reuse. Another 7nm accelerator, SHARP [46], balances
the accuracy with the overhead by tuning the word size. Some
FPGA-based accelerators [18], [60] also present comparable
performance on benchmarks with the ASIC accelerators.

Besides the overhead caused by bootstrapping, HE also
falls short of supporting different types of functions. In par-
ticular, BFV and CKKS cannot support non-linear functions
efficiently, e.g., activation function in neural networks. A
solution is to approximate these functions using high-order
polynomials [61]. However, this solution has the drawback of
modifying an already-trained model, resulting in a degradation
of model accuracy.
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B. Trusted Execution Environment (TEE)

TEEs construct secure enclaves within untrusted resources
such as cloud services. The enclaves can provide attestation
on verifying the required security configuration and ensure the
isolation of code and data from untrusted external resources
during task execution. The isolation is implemented using stan-
dard cryptographic techniques between processes or virtual
machines. Ohrimenko et al. designed data-oblivious models
to prevent exploitation of side channels induced by data-
dependent access patterns on Intel SGX environments [62].
Flatee is a framework for privacy-preserving FL based on
TEEs. It allows efficient training of distributed models while
also providing strict privacy guarantees against data-poisoning
and model-poisoning attacks [63].

Although TEEs can generally meet performance require-
ments, they rely on trusted hardware manufacturers and are
hindered by the risk of side-channel leakage. Therefore, uti-
lizing TEEs is not feasible under certain security assumptions.

IX. CONCLUSION

In this work, we design a scalable HE accelerator, named
SAFE, for high-performance vertical federated learning. SAFE
employs an algorithm-hardware co-design approach. A low-
complexity coefficient-wise encoded HMVP algorithm is
adopted. Despite the vanilla mode, we further explore the com-
pressed concatenated modes, which can encode the plaintext
matrix more compactly. The proposed hardware architecture,
customized for HMVP data flow, supports both spatial and
temporal parallelization of function units. As part of this
design, we incorporate a low-area constant-geometry NTT
unit to accelerate the computationally expensive polynomial
functions. SAFE is deployed as a part of the heterogeneous
acceleration solution on the CPU-FPGA system. The ex-
perimental results demonstrate up to 36× speed-up for LR
training.

REFERENCES

[1] F. Kerschbaum, Privacy-Preserving Computation. Springer Berlin
Heidelberg, 2014.

[2] J. Cabrero-Holgueras and S. Pastrana, “SoK: Privacy-preserving com-
putation techniques for deep learning,” Proc. Priv. Enhancing Technol.,
vol. 2021, no. 4, pp. 139–162, 2021.

[3] N. Agrawal, R. Binns, M. V. Kleek, K. Laine, and N. Shadbolt,
“Exploring design and governance challenges in the development of
privacy-preserving computation,” in Proc. CHI ’21. ACM, 2021, pp.
68:1–68:13.

[4] S. Hardy, W. Henecka, H. Ivey-Law, R. Nock, G. Patrini, G. Smith, and
B. Thorne, “Private federated learning on vertically partitioned data via
entity resolution and additively homomorphic encryption,” CoRR, vol.
abs/1711.10677, 2017.

[5] C. Chen, J. Zhou, L. Wang, X. Wu, W. Fang, J. Tan, L. Wang, A. X. Liu,
H. Wang, and C. Hong, “When homomorphic encryption marries secret
sharing: Secure large-scale sparse logistic regression and applications in
risk control,” in Proc. KDD ’21. ACM, 2021, pp. 2652–2662.

[6] Y. Liu, T. Fan, T. Chen, Q. Xu, and Q. Yang, “FATE: An Industrial Grade
Platform for Collaborative Learning with Data Protection,” Journal of
Machine Learning Research, vol. 22, pp. 1–6, 2021.

[7] R. L. Rivest, L. Adleman, and M. L. Dertouzos, “On data banks and
privacy homomorphisms,” Foundations of Secure Computation, vol. 4,
no. 11, pp. 169–180, 1978.

[8] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D.
dissertation, Stanford University, USA, 2009. [Online]. Available:
https://searchworks.stanford.edu/view/8493082

[9] Z. Brakerski, “Fully homomorphic encryption without modulus switch-
ing from classical GapSVP,” in Proc. CRYPTO ’12, vol. 7417. Springer,
2012, pp. 868–886.

[10] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption,” Cryptology ePrint Archive, Paper 2012/144, 2012, https:
//eprint.iacr.org/2012/144.

[11] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) fully ho-
momorphic encryption without bootstrapping,” ACM Trans. Comput.
Theory, vol. 6, no. 3, pp. 13:1–13:36, 2014.

[12] J. H. Cheon, A. Kim, M. Kim, and Y. S. Song, “Homomorphic
encryption for arithmetic of approximate numbers,” in Proc. ASIACRYPT
’2017, vol. 10624. Springer, 2017, pp. 409–437.

[13] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “A full RNS variant
of approximate homomorphic encryption,” in Proc. SAC ’18, vol. 11349.
Springer, 2018, pp. 347–368.

[14] ——, “Bootstrapping for approximate homomorphic encryption,” in
Proc. EUROCRYPT ’18, vol. 10820. Springer, 2018, pp. 360–384.

[15] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in Proc. EUROCRYPT ’99, vol. 1592. Springer, 1999,
pp. 223–238.

[16] T. E. Gamal, “A public key cryptosystem and a signature scheme based
on discrete logarithms,” IEEE Trans. Inf. Theory, vol. 31, no. 4, pp.
469–472, 1985.

[17] M. Albrecht, M. Chase, H. Chen, J. Ding, S. Goldwasser, S. Gorbunov,
S. Halevi, J. Hoffstein, K. Laine, K. Lauter et al., “Homomorphic
Encryption Standard,” in Protecting Privacy through Homomorphic
Encryption. Springer, 2021, pp. 31–62.

[18] Y. Yang, H. Zhang, S. Fan, H. Lu, M. Zhang, and X. Li, “Poseidon:
Practical homomorphic encryption accelerator,” in Proc. HPCA ’23.
IEEE, 2023, pp. 870–881.

[19] S. Halevi and V. Shoup, “Design and implementation of helib: a
homomorphic encryption library,” Cryptology ePrint Archive, Paper
2020/1481, 2020, https://eprint.iacr.org/2020/1481.

[20] A. A. Badawi, Y. Polyakov, K. M. M. Aung, B. Veeravalli, and
K. Rohloff, “Implementation and performance evaluation of RNS vari-
ants of the BFV homomorphic encryption scheme,” IEEE Trans. Emerg.
Top. Comput., vol. 9, no. 2, pp. 941–956, 2021.

[21] A. Brutzkus, R. Gilad-Bachrach, and O. Elisha, “Low latency privacy
preserving inference,” in Proc. ICML ’19, vol. 97. PMLR, 2019, pp.
812–821.

[22] D. Kim, J. Park, J. Kim, S. Kim, and J. H. Ahn, “Hyphen: A hybrid
packing method and its optimizations for homomorphic encryption-
based neural networks,” IEEE Access, vol. 12, pp. 3024–3038, 2024.

[23] E. Lee, J. Lee, J. Lee, Y. Kim, Y. Kim, J. No, and W. Choi, “Low-
complexity deep convolutional neural networks on fully homomorphic
encryption using multiplexed parallel convolutions,” in Proc. ICML ’22,
vol. 162. PMLR, 2022, pp. 12 403–12 422.

[24] D. Soni, M. Nabeel, H. Gamil, O. Mazonka, B. Reagen, R. Karri, and
M. Maniatakos, “Design space exploration of modular multipliers for
ASIC FHE accelerators,” in Proc. ISQED ’23. IEEE, 2023, pp. 1–8.

[25] K. Han and D. Ki, “Better bootstrapping for approximate homomorphic
encryption,” in Proc. CT-RSA ’20, vol. 12006. Springer, 2020, pp.
364–390.

[26] J. W. Lee, H. Kang, Y. Lee, W. Choi, J. Eom, M. Deryabin, E. Lee,
J. Lee, D. Yoo, Y. S. Kim, and J. S. No, “Privacy-preserving machine
learning with fully homomorphic encryption for deep neural network,”
IEEE Access, vol. 10, no. 1, pp. 30 039–30 054, 2022.

[27] M. S. Riazi, K. Laine, B. Pelton, and W. Dai, “HEAX: an architecture
for computing on encrypted data,” in Proc. ASPLOS ’20. ACM, 2020,
pp. 1295–1309.

[28] S. Kim, K. Lee, W. Cho, Y. Nam, J. H. Cheon, and R. A. Rutenbar,
“Hardware architecture of a number theoretic transform for a bootstrap-
pable RNS-based homomorphic encryption scheme,” in Proc. FCCM
’20. IEEE, 2020, pp. 56–64.

[29] S. Sinha Roy, F. Turan, K. Jarvinen, F. Vercauteren, and I. Verbauwhede,
“FPGA-based high-performance parallel architecture for homomorphic
computing on encrypted data,” in Proc. HPCA ’19, 2019, pp. 387–398.

[30] S. Kim, K. Lee, W. Cho, J. H. Cheon, and R. A. Rutenbar, “FPGA-based
Accelerators of Fully Pipelined Modular Multipliers for Homomorphic
Encryption,” in Proc. ReConFig ’19, 2019.

[31] S. S. Roy, K. Jarvinen, J. Vliegen, F. Vercauteren, and I. Verbauwhede,
“HEPCloud: An FPGA-Based Multicore Processor for FV Somewhat
Homomorphic Function Evaluation,” IEEE Trans. on Comp., vol. 67,
no. 11, pp. 1637–1650, 2018.

[32] V. Migliore, M. M. Real, V. Lapotre, A. Tisserand, C. Fontaine, and
G. Gogniat, “Hardware/Software Co-Design of an Accelerator for FV

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3496836

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ShanghaiTech University. Downloaded on December 16,2024 at 08:09:48 UTC from IEEE Xplore.  Restrictions apply. 



13

Homomorphic Encryption Scheme Using Karatsuba Algorithm,” IEEE
Trans. on Comp., vol. 67, no. 3, pp. 335–347, 2018.

[33] E. Ozturk, Y. Doroz, E. Savas, and B. Sunar, “A Custom Accelerator
for Homomorphic Encryption Applications,” IEEE Trans. on Comp.,
vol. 66, no. 1, pp. 3–16, 2017.

[34] D. B. Cousins, K. Rohloff, and D. Sumorok, “Designing an FPGA-
accelerated Homomorphic Encryption Co-processor,” IEEE Trans. on
Emerging Topics in Comp., vol. 5, no. 2, pp. 193–206, 2017.

[35] W. Jung, S. Kim, J. H. Ahn, J. H. Cheon, and Y. Lee, “Over 100x Faster
Bootstrapping in Fully Homomorphic Encryption through Memory-
centric Optimization with GPUs,” IACR Trans. Cryptogr. Hardw. Embed.
Syst., vol. 2021, no. 4, pp. 114–148, 2021.

[36] W. Jung, E. Lee, S. Kim, J. Kim, N. Kim, K. Lee, C. Min, J. H. Cheon,
and J. H. Ahn, “Accelerating Fully Homomorphic Encryption through
Architecture-centric Analysis and Optimization,” IEEE Access, vol. 9,
pp. 98 772–98 789, 2021.

[37] P. G. M. R. Alves, J. N. Ortiz, and D. F. Aranha, “Faster homomorphic
encryption over gpgpus via hierarchical DGT,” in Proc. FC ’21, vol.
12675. Springer, 2021, pp. 520–540.

[38] A. A. Badawi, C. Jin, J. Lin, C. F. Mun, S. J. Jie, B. H. M. Tan, X. Nan,
K. M. M. Aung, and V. R. Chandrasekhar, “Towards the alexnet moment
for homomorphic encryption: HCNN, the first homomorphic CNN on
encrypted data with gpus,” IEEE Trans. Emerg. Top. Comput., vol. 9,
no. 3, pp. 1330–1343, 2021.

[39] W. Dai and B. Sunar, “cuHE: A homomorphic encryption accelerator
library,” in Proc. BalkanCryptSec 2015, E. Pasalic and L. R. Knudsen,
Eds., vol. 9540. Springer, 2015, pp. 169–186.

[40] Z. Wang, P. Li, R. Hou, Z. Li, J. Cao, X. Wang, and D. Meng, “He-
booster: An efficient polynomial arithmetic acceleration on gpus for
fully homomorphic encryption,” IEEE Trans. Parallel Distributed Syst.,
vol. 34, no. 4, pp. 1067–1081, 2023.

[41] A. Feldmann, N. Samardzic, A. Krastev, S. Devadas, R. Dreslinski,
C. Peikert, and D. Sanchez, “F1: A Fast and Programmable Accelerator
for Fully Homomorphic Encryption,” in Proc. MICRO ’21’, 2021, pp.
238–252.

[42] S. Kim, J. Kim, M. J. Kim, W. Jung, M. Rhu, J. Kim, and J. H.
Ahn, “BTS: An Accelerator for Bootstrappable Fully Homomorphic
Encryption,” in Proc. ISCA ’22, 2022, pp. 711–725.

[43] N. Samardzic, A. Feldmann, N. Manohar, N. Genise, K. Eldefrawy,
C. Peikert, A. Arbor, and D. Sanchez, “CraterLake : A Hardware
Accelerator for Efficient Unbounded Computation on Encrypted Data,”
in Proc. ISCA ’22, 2022.

[44] R. Geelen, M. V. Beirendonck, H. V. L. Pereira, B. Huffman,
T. McAuley, B. Selfridge, D. Wagner, G. D. Dimou, I. Verbauwhede,
F. Vercauteren, and D. W. Archer, “BASALISC: programmable hardware
accelerator for BGV fully homomorphic encryption,” IACR Trans.
Cryptogr. Hardw. Embed. Syst., vol. 2023, no. 4, pp. 32–57, 2023.

[45] J. Kim, G. Lee, S. Kim, G. Sohn, M. Rhu, J. Kim, and J. H. Ahn, “ARK:
fully homomorphic encryption accelerator with runtime data generation
and inter-operation key reuse,” in Proc. MICRO ’22. IEEE, 2022, pp.
1237–1254.

[46] J. Kim, S. Kim, J. Choi, J. Park, D. Kim, and J. H. Ahn, “SHARP:
A short-word hierarchical accelerator for robust and practical fully
homomorphic encryption,” in Proc. ISCA ’23. ACM, 2023, pp. 18:1–
18:15.

[47] X. Ren, Z. Chen, Z. Gu, Y. Lu, R. Zhong, W. Lu, J. Zhang, Y. Zhang,
H. Wu, X. Zheng, H. Liu, T. Chu, C. Hong, C. Wei, D. Niu, and Y. Xie,
“CHAM: A customized homomorphic encryption accelerator for fast
matrix-vector product,” in Proc. DAC ’23. IEEE, 2023, pp. 1–6.

[48] A. C. Mert, Aikata, S. Kwon, Y. Shin, D. Yoo, Y. Lee, and S. S. Roy,
“Medha: Microcoded hardware accelerator for computing on encrypted
data,” IACR Trans. Cryptogr. Hardw. Embed. Syst., vol. 2023, no. 1, pp.
463–500, 2023.

[49] H. Chen, W. Dai, M. Kim, and Y. Song, “Efficient homomorphic
conversion between (ring) LWE ciphertexts,” in Proc. ACNS ’21, vol.
12726. Springer, 2021, pp. 460–479.

[50] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “GAZELLE: A
Low Latency Framework for Secure Neural Network Inference,” in Proc.
USENIX Security ’18, 2018, pp. 1651–1668.

[51] Z. Huang, W. Lu, C. Hong, and J. Ding, “Cheetah: Lean and fast secure
two-party deep neural network inference,” in Proc. USENIX Security
’22. USENIX Association, 2022, pp. 809–826.

[52] P. Longa and M. Naehrig, “Speeding up the number theoretic transform
for faster ideal lattice-based cryptography,” in Proc. CANS ’16, S. Foresti
and G. Persiano, Eds., vol. 10052, 2016, pp. 124–139.

[53] M. C. Pease, “An Adaptation of the Fast Fourier Transform for Parallel
Processing,” Journal of ACM, vol. 15, no. 2, pp. 252–264, 1968.

[54] D. D. Chen, N. Mentens, F. Vercauteren, S. S. Roy, R. C. C. Cheung,
D. C. Pao, and I. Verbauwhede, “High-Speed Polynomial Multiplication
Architecture for Ring-LWE and SHE Cryptosystems,” IEEE Trans.
Circuits Syst. I Regul. Pap., vol. 62-I, no. 1, pp. 157–166, 2015.

[55] J. Cooley and J. Tukey, “An Algorithm for the Machine Calculation of
Complex Fourier Series,” Mathematics of Computation, vol. 19, no. 90,
pp. 297–301, 1965.

[56] S. Liu, C. Kuo, Y. Mo, and T. Su, “An area-efficient, conflict-free, and
configurable architecture for accelerating NTT/INTT,” IEEE Trans. Very
Large Scale Integr. Syst., vol. 32, no. 3, pp. 519–529, 2024.

[57] N. Zhang, B. Yang, C. Chen, S. Yin, S. Wei, and L. Liu, “Highly Effi-
cient Architecture of NewHope-NIST on FPGA using Low-Complexity
NTT/INTT,” IACR Trans. Cryptogr. Hardw. Embed. Syst., vol. 2020,
no. 2, pp. 49–72, 2020.

[58] “Microsoft SEAL (release 3.5),” https://github.com/Microsoft/SEAL,
Apr. 2020, microsoft Research, Redmond, WA.

[59] DARPA, “Data Protection in Virtual Environments,” 2021. [Online].
Available: https://www.darpa.mil/news-events/2021-03-08

[60] R. Agrawal, L. de Castro, G. Yang, C. Juvekar, R. T. Yazicigil, A. P.
Chandrakasan, V. Vaikuntanathan, and A. Joshi, “FAB: an fpga-based
accelerator for bootstrappable fully homomorphic encryption,” in Proc.
HPCA ’23. IEEE, 2023, pp. 882–895.

[61] E. Hesamifard, H. Takabi, and M. Ghasemi, “CryptoDL: Deep neural
networks over encrypted data,” CoRR, vol. abs/1711.05189, 2017.

[62] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin,
K. Vaswani, and M. Costa, “Oblivious multi-party machine learning
on trusted processors,” in Proc. USENIX Security ’16. USENIX
Association, 2016, pp. 619–636.

[63] A. Mondal, Y. More, R. H. Rooparaghunath, and D. Gupta, “Poster:
FLATEE: federated learning across trusted execution environments,” in
Proc. EuroS&P ’21. IEEE, 2021, pp. 707–709.

Zhaohui Chen received a Ph.D. degree in computer
science and technology from the University of Chi-
nese Academy of Sciences, China.

He is currently working with DAMO Academy,
Alibaba Group. His research interests include ap-
plied cryptography, hardware security, and homo-
morphic encryption.

Zhen Gu received the bachelor’s degree and the
Ph.D. degree in microelectronics from School of
Integrated Circuits, Tsinghua University, Beijing,
China. After graduation, he was employed as Re-
search Scientist in DAMO Academy of Alibaba
Group, China. His research interests include crypto-
graphic and privacy enhancing algorithms and VLSI
designs.

Yanheng Lu received the B.S. and M.S. degrees in
microelectronics from Fudan University, Shanghai,
China, in 2013 and 2016, respectively. He is cur-
rently a Research Scientist in Computing Technol-
ogy Lab at Alibaba DAMO Academy. Before joining
Alibaba, he also worked with the China System Lab,
IBM. His current research interests include computer
architecture, storage systems, and domain-specific
architectures.

Xuanle Ren received the B.S. degree in microelec-
tronics from Peking University, Beijing, China, in
2012, and the Ph.D. degree in electrical and com-
puter engineering from Carnegie Mellon University,
Pittsburgh, PA, USA, in 2018.

He has been working as a Research Scientist
with Alibaba Group, Hangzhou, China, and Bitmain,
Beijing, China. His research is focused on privacy-
preserving computing, design of secure computer
architecture and hardware security.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3496836

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ShanghaiTech University. Downloaded on December 16,2024 at 08:09:48 UTC from IEEE Xplore.  Restrictions apply. 



14

Ruiguang Zhong received the B.S and M.S. de-
grees from the Beijing University of Posts and
Telecommunications in 2016 and 2019. He is now a
researcher in the technology planning department of
NIO, where his main research interests encompass
heterogeneous computing, large language model
compression, and privacy computing.

Wen-jie Lu received his Doctoral Degree from
Tsukuba University, Japan. His research interests
include privacy-preserving machine learning and ap-
plied homomorphic encryption.

Jiansong Zhang received his bachelor’s and mas-
ter’s degrees from Tsinghua University, Beijing,
China, in 2004 and 2006, respectively, and the Ph.D.
degree from the Hong Kong University of Science
and Technology in 2014.

He is a Research Scientist in China Telecom and
working on networking and cloud computing. Before
that, he was research scientist in NIO, Alibaba Damo
Academy and Microsoft Research Asia. His research
interests include heterogeneous computing for Cloud
and AIoT systems, networking systems, software-

hardware co-design and vehicle computing. He has published dozens of papers
in top-tier conferences like Sigcomm, NSDI, Mobicom, Ubicomp, Mobisys,
HotNets, HotChips, FCCM, Infocom, and MLSys.

Yichi Zhang received the BS degree in microelec-
tronics from Tsinghua University, Beijing, China,
in 2022. He is currently working toward the PhD
degree with the School of Integrated Circuits, Ts-
inghua University. His research interests include re-
configurable computer architecture, domain-specific
accelerators, and computational genomics.

Hanghang Wu received his bachelor’s degree in
computer science and technology from Tsinghua
University, Beijing, China. WU is a staff engineer
with Ant Group, Beijing, 100020, China. His re-
search interests include privacy-preserving compu-
tation and verifiable computation. Contact him at
hanghang.whh@antgroup.com.

Xiaofu Zheng received a master’s degree in Com-
munication Engineering from the Xidian Univer-
sity, Xi’an, China. He works with Ant Group, Bei-
jing, China. His research interests include privacy-
preserving computation and verifiable computation.

Heng Liu received a master’s degree in circuits and
systems from Zhejiang University, China. She cur-
rently works with SiOrigin Intelligent Technology
Co., Ltd. Her research interests include computer ar-
chitecture, power management, and SoC integration.

Tingqiang Chu received his M.S. degree in elec-
tronics & communication engineering from Nan-
jing University of Posts and Telecommunications,
Nanjing, China. CHU is a staff engineer with Ant
Group, Shanghai, 200010, China. His research in-
terests include blockchain, privacy-preserving com-
putation and verifiable computation. Contact him at
chutingqiang.ctq@antgroup.com.

Cheng Hong received his PhD degree from the
University of Chinese Academy of Sciences, China
in 2012. He is currently the director of Cryptography
and Privacy Research of Ant Group, China. His
research interests include information security and
applied cryptography.

Changzheng Wei received a master’s degree in
microelectronics from the Chinese Academy of Sci-
ences, Shanghai, China. WEI is a senior staff en-
gineer with Ant Group, Shanghai, 200010, China.
His research interests include blockchain, privacy-
preserving computation and verifiable computation.
Contact him at changzheng.wcz@antgroup.com.

Dimin Niu Dimin Niu received the PhD degree
in computer science from the Pennsylvania State
University, University Park, in 2012. He is a research
scientist with Computing Technology Lab, Alibaba
DAMO Academy. Prior to joining Alibaba, he was
a staff memory architecture with Memory Solutions
Laboratory, Samsung Semiconductor Inc. His cur-
rent research interests include computer architecture,
memory architecture, storage system, process-in-
memory, and domain specific architectures.

Yuan Xie (Fellow, IEEE) received the B.S. degree
from Tsinghua University, Beijing, China, and the
M.S. and Ph.D. degrees from the Department of
Electrical Engineering, Princeton University, Prince-
ton, NJ, USA, in 2002.

He was with IBM Microelectronics Division’s
Worldwide Design Center, Burlington, NJ, USA;
Pennsylvania State University, State College, PA,
USA; AMD Research, Beijing; and University of
California at Santa Barbara, Santa Barbara, CA,
USA.

Dr. Xie is a recipient of the NSF CAREER Award and the IEEE Computer
Society Edward J. McCluskey Technical Achievement Award in 2020. He is
a Fellow of ACM and AAAS.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3496836

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ShanghaiTech University. Downloaded on December 16,2024 at 08:09:48 UTC from IEEE Xplore.  Restrictions apply. 


