
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 1, JANUARY 2019 149

IC Protection Against JTAG-Based Attacks
Xuanle Ren , Student Member, IEEE, Francisco Pimentel Torres, Student Member, IEEE,

R. D. Blanton, Fellow, IEEE, and Vítor Grade Tavares, Member, IEEE

Abstract—Security is now becoming a well-established chal-
lenge for integrated circuits (ICs). Various types of IC attacks
have been reported, including reverse engineering IPs, dump-
ing on-chip data, and controlling/modifying IC operation. IEEE
1149.1, commonly known as Joint Test Action Group (JTAG), is
a standard for providing test access to an IC. JTAG is primarily
used for IC manufacturing test, but also for in-field debugging
and failure analysis since it gives access to internal subsystems
of the IC. Because the JTAG needs to be left intact and oper-
ational after fabrication, it inevitably provides a “backdoor”
that can be exploited outside its intended use. This paper pro-
poses machine learning-based approaches to detect illegitimate
use of the JTAG. Specifically, JTAG operation is characterized
using various features that are then classified as either legiti-
mate or attack. Experiments using the OpenSPARC T2 platform
demonstrate that the proposed approaches can classify legitimate
JTAG operation and known attacks with significantly high accu-
racy. Experiments also demonstrate that unknown and disguised
attacks can be detected with high accuracy as well (99% and
94%, respectively).

Index Terms—Hardware security, Joint Test Action Group
(JTAG), machine learning, reverse engineering.

I. INTRODUCTION

HARDWARE security is becoming a significant challenge
in the design and fabrication of integrated circuits (ICs).

Several integrated systems, including a field-programmable

Manuscript received September 4, 2017; revised December 6, 2017;
accepted January 10, 2018. Date of publication February 5, 2018; date of
current version December 19, 2018. This work was supported in part by the
Project “NanoSTIMA: Macro-to-Nano Human Sensing: Towards Integrated
Multimodal Health Monitoring and Analytics/NORTE-01-0145-FEDER-
000016”, which is financed by the North Portugal Regional Operational
Programme (NORTE 2020), under the PORTUGAL 2020 Partnership
Agreement, and through the European Regional Development Fund (ERDF).
This work was also supported in part by the Portuguese Foundation for Science
and Technology (FCT), under Scholarship SFRH/BD/52166/2013, through the
Carnegie Mellon | Portugal Program. The authors would also like to thank
Prof. João Canas Ferreira for the help with the FPGA. This work was pre-
sented in part at the Design, Automation and Test in Europe in Mar. 2015
and the Computer Society Annual Symposium on VLSI in Jul. 2016. This
paper was recommended by Associate Editor X. Wen. (Corresponding author:
Xuanle Ren.)

X. Ren is with the Advanced Chip Test Laboratory of the Electrical and
Computer Engineering Department, Carnegie Mellon University, Pittsburgh,
PA 15213 USA, also with the Faculty of Engineering, University of Porto,
4200-465 Porto, Portugal, and also with INESC TEC, 4200-465 Porto,
Portugal (e-mail: xuanler@ece.cmu.edu).

F. P. Torres is with Chip Design Team, Qualcomm, Cambridge CB4 0WZ,
U.K.

R. D. Blanton is with the Advanced Chip Test Laboratory of the Electrical
and Computer Engineering Department, Carnegie Mellon University,
Pittsburgh, PA 15213 USA.

V. G. Tavares is with the Faculty of Engineering, University of Porto,
4200-465 Porto, Portugal, and also with INESC TEC, Porto, Portugal.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2018.2802866

gate array (FPGA) for military use, have been attacked
successfully [1]–[3]. The adversaries, including clever out-
siders, knowledgeable insiders, and funded organizations, may
employ different attack methods for a variety of purposes [4].
An outsider may control inputs and observe outputs of an
IC in order to reverse engineer the design noninvasively. A
knowledgeable insider may observe side-channel signals (via
the test interface [5]–[8], perform power or magnetic anal-
yses [9]–[11]) and disable/modify the communication within
the IC [12]. A funded organization may even influence the
IC fabrication process, invasively reverse engineer the IC, and
inject Trojans [13].

Among the attack methods, scan-based attacks are per-
formed through the standard test access port (TAP) and
the boundary-scan architecture, which is defined by the
IEEE 1149.1 standard [or named Joint Test Action Group
(JTAG)] [14]. Although some attackers have greater levels of
access, it is reasonable to assume that the JTAG is a pre-
ferred conduit for improperly accessing the IC, mainly because
of two reasons. First, the JTAG is a widely used interface
for manufacturing testing and in-field debugging of modern
ICs. Second, the JTAG typically provides powerful features
for accessing on-chip data and circuitry. The OpenSPARC
T2 [15], for example, has more than ten debugging func-
tions within the JTAG, such as L2 cache r/w, memory built-in
self-test (MBIST), and direct memory access.

A. Motivation

The controllability and observability provided by undoc-
umented (private) JTAG functions inevitably undermine the
security of ICs. On one hand, scan chains can be used as
a side channel to dump on-chip data. One example involves
cryptographic keys [5]–[8], [16]–[20]. Specifically, hardware
encryption primitives use a block cipher to encrypt a plain text,
but the intermediate results, usually located in scan chains,
can be shifted out, through which the encryption key can be
derived. On the other hand, various private JTAG functions
used for in-field debugging, diagnosis and firmware upgrade
are also vulnerable to scan-based attacks. Such weakness has
allowed attackers to successfully derive data from on-chip
memory [1], update firmware [2], control chip operation [3],
and uncover the JTAG architecture [21].

In this paper, three detectors are proposed for identify-
ing JTAG attacks through monitoring the JTAG port. Two of
them employ machine learning algorithms for classification,1

1In a binary classification problem, given a set of samples, each belonging
to one of two classes, a classifier based on these samples (called training) is
constructed and later used for predicting which class a new sample belongs.

0278-0070 c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Zhejiang Tmall Technology Co.Ltd.. Downloaded on July 31,2021 at 04:53:23 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8272-1164

150 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 1, JANUARY 2019

and the third involves an anomaly detection approach based
on representative JTAG operations. All detectors rely on the
assumption that an attacker only has access to the JTAG port
and is, at least initially, unaware of all private JTAG functions.
The first detector characterizes the JTAG operation using a set
of features derived from the test port inputs; the features are
then fed to a trained forest of decision trees [22] that cate-
gorizes the operation as either legitimate or an attack. The
second detector uses a support vector machine (SVM) [23] to
examine the JTAG operation over time; this detector is capable
of detecting attacks not used in the training of the SVM. It is
worth noting that the capability of detecting new attacks is dif-
ficult to verify comprehensively since different types of attacks
are always arising. The experiments treat an existing attack as
unknown by excluding it from classifier training, thus pro-
viding a preliminary evaluation for the capability of detecting
unknown JTAG attacks. The third detector attempts to cate-
gorize JTAG attacks based on representative JTAG sequences.
Different from traditional anomaly detection using manually
designed state machines, the representative sequences can be
derived automatically. Besides, the probabilistic nature of the
derivation incurs fewer false alerts than state machines. An IC
designer is recommended to employ one of them based on the
tradeoff of overhead and performance.

In addition to the detectors, a JTAG protection approach
is also proposed. Specifically, upon detection of an attack,
access to data registers (DRs) through the JTAG is modi-
fied to disable controllability and observability provided by
the JTAG.

B. Prior Work

To protect the JTAG from attacks, various techniques have
been proposed [8], [24]–[29]. One technique involves disabling
the JTAG through antifuse after manufacturing test; however,
this also disables in-field testing and debugging [30]. Access
to the JTAG can also be obfuscated by distributing its ports
across the chip (or board), but the ports can still be found using
exhaustive search [2]. Third, on-chip compression/compaction,
originally aimed at expediting manufacturing test, also protects
on-chip data from being directly observed through obfuscating
test responses [25]. However, it only protects the scan chains
rather than private JTAG functions [8]. Another technique
involves password-based authentication that requires a correct
password to gain access to the JTAG [26]–[28]. Nevertheless,
the plain-text password might be eavesdropped; this shortcom-
ing is exacerbated if all fabricated instances share the same
password. The risk of plain-text passwords can be mitigated
using more complex encryption algorithms, such as DES [5],
AES [16], RSA [7], and ECC [17]. Nonetheless, all of these
encryption algorithms require a trusted server to manage the
multistage authentication between the user and the device,
which relies on the availability of a network.

Most of the aforementioned approaches mainly target scan
chains, while protecting private JTAG functions has gained
little attention so far. Further, because modern ICs are imple-
mented using more and more debugging functions, the security
of private JTAG functions is also becoming more important.

Concurrently, intrusion detection based on JTAG input anal-
ysis is an approach that can add complementary security to
encryption techniques [31]–[35]. One example involves signa-
ture detection that characterizes known JTAG misuses using
a database of signatures. An observed JTAG operation that
matches any signature is labeled as an attack. However, the
effectiveness of a signature detector strongly relies on the
comprehensiveness of the signature database. To overcome
this limitation, anomaly detection creates models of legiti-
mate JTAG operation and identifies operations that do not
conform. An anomaly detector can be achieved using either a
state machine [32] or a Markov chain [33]. The former uses
strict control flows for modeling legitimate JTAG operation
and makes a binary decision about whether a given JTAG
operation is legitimate, while the latter makes a probabilistic
decision. However, for both models, variances of legitimate
JTAG operation can incur significant inaccuracy.

In addition to detecting attacks, various architectures have
also been proposed to secure the IC after an attack is detected.
One technique involves locking the JTAG and restricting
access [27]–[29], [36], [37]. JTAG access is permitted after
verification via the authentication infrastructure. A locked
JTAG behaves like a bypass register or a disconnection
between the input and the output of the test interface. However,
this approach suffers from the same risks as the password-
based authentication. Another technique is to scramble the data
at the scan output in an unpredictable order [36], [38]–[40].
The key idea is to divide a register into multiple subregis-
ters and scramble the order in how they appear at the output.
Output scrambling is deactivated if authentication is success-
ful. Nevertheless, register data, even though scrambled, is still
observable.

The learning-based detectors proposed here have several
potential benefits compared to prior work. First, the detection
is stand-alone and does not rely on an encryption scheme,
thus avoiding problems related with password management
and leakage. Second, learning-based detectors not only pro-
tect scan chains but also the private JTAG functions that are
becoming increasingly more complex. Third, using both legit-
imate JTAG operations and attacks for classifier training is an
improvement over an incomplete signature database, and also
incurs fewer false positives than anomaly detectors. Finally, the
proposed secure JTAG architecture differs from data scram-
ble because an attacker can neither observe the actual register
data nor be notified whether the JTAG enters into a protection
mode.

II. REVERSE ENGINEERING THROUGH JTAG

As shown in Fig. 1(a), the JTAG TAP consists of four (or
five) pins, including the test data input (TDI), the test data
output (TDO), the test mode select (TMS), the test clock, and
the optional test reset (TRST). A boundary scan chain, usu-
ally located at the periphery of a chip not only allows test
stimuli to be supplied serially to the chip pins via the TDI
but also allows the test response to be observed serially via
the TDO. In addition to the boundary scan chain, other DRs,
some through private JTAG functions, can also be accessed

Authorized licensed use limited to: Zhejiang Tmall Technology Co.Ltd.. Downloaded on July 31,2021 at 04:53:23 UTC from IEEE Xplore. Restrictions apply.

REN et al.: IC PROTECTION AGAINST JTAG-BASED ATTACKS 151

(a)

(b)

Fig. 1. (a) Block diagram of a typical JTAG architecture. (b) JTAG TAP
controller is a one-input FSM.

using the TDI and TDO pins. Fig. 1(a) shows two example
DRs, one for updating the firmware and the other for cap-
turing/updating scan values. Access to DRs is operated by
the JTAG TAP controller that implements the state diagram
shown in Fig. 1(b). The JTAG TAP controller is a finite state
machine (FSM) controlled by a single input, the TMS. Every
DR has one or more affiliated instructions that provide access,
configuration, or control. A user can select a DR by loading
the appropriate instruction opcode into the instruction regis-
ter (IR) via the TDI. A selected DR can be operated using
three fundamental register operations, namely capture, shift,
and update. For example, for the OpenSPARC T2, selecting
the boundary-scan chain initially requires an opcode 00 (in
hexadecimal format). The user then loads the input stimuli
via the TDI by repeatedly entering the shift-DR state. Finally,
the update-DR state applies the stimuli as input to the chip
logic. After the operation of the chip logic is completed, the
response is captured by the scan chain within the capture-DR
state, which can then be shifted out via the TDO by repeat-
edly entering the shift-DR state. Another example involves
the MBIST operation. Different from the boundary scan, the
MBIST operation of the OpenSPARC T2 is executed using a
sequence of instructions with a predefined order, that is, typ-
ically, selecting the on-chip modules to be tested (instruction
MBIST_BYPASS), setting the MBIST mode (MBIST_MODE),
initiating the MBIST process (MBIST_START), and checking
the result (MBIST_RESULT).

TABLE I
JTAG ATTACK STRATEGIES ARE ORGANIZED AS

THREE MAIN STEPS AND NINE SUBSTEPS

A JTAG attack normally begins with reverse engineering the
private JTAG functions. Table I lists typical attack strategies
that can be categorized in three main steps and nine sub-
steps [1], [3], [21], [41]. The first step is to identify the JTAG
ports physically. This step is relatively easy because the test
ports are usually clustered together someplace on the chip. The
second step is to explore the property of the IR and the DRs.
The length of the IR and the DRs can be easily extracted by
shifting in a sufficiently long sequence of ones followed by
a single zero. The opcodes that are not associated with any
DR usually behave as a one-bit bypass register or a discon-
nection. These opcodes are important because they likely lie
between valid opcodes corresponding to different JTAG func-
tions. For example, in the OpenSPARC T2, the instructions
for control-register configuration and MBIST have opcodes
that are separated by unused opcodes 11 and 12 (in hexadec-
imal format). Besides checking the length of a DR, it is also
beneficial to learn if a DR can be captured and updated. An
attacker may dump on-chip data from a DR that can be cap-
tured, and write data into the chip through a DR that can be
updated. Further, if a DR can be updated and another DR with
neighboring opcode can be captured, then an attacker can make
a reasonable guess that these two DRs are used for reading
some memory. In other words, the first DR sends an address
and the second DR captures the corresponding data. By simi-
lar means, an attacker can uncover additional JTAG functions
by investigating the interactions between adjacent instruction
opcodes.

III. DETECTORS FOR IDENTIFYING JTAG ATTACKS

In this section, three detectors are described for identifying
JTAG attacks. The first and the second are based on a ran-
dom forest and an SVM, respectively, and the third employs
an anomaly detection approach based on representative JTAG
operations.

A. Random Forest

The first detector employs a random-forest model [22]
involving two phases, namely offline learning and online pre-
diction, as shown in Fig. 2. For the offline learning, an
ensemble of decision-tree classifiers are trained using fea-
tures extracted from already-collected JTAG operations. For

Authorized licensed use limited to: Zhejiang Tmall Technology Co.Ltd.. Downloaded on July 31,2021 at 04:53:23 UTC from IEEE Xplore. Restrictions apply.

152 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 1, JANUARY 2019

Fig. 2. Random forest detector consists of two phases: offline learning and
online prediction.

the online prediction, the features are monitored in real-time
and classified using the trained classifier.

1) Features: A set of specifically defined features (named
FEATURE-SET-1) as shown in Table II are used to characterize
JTAG operation in two aspects: 1) intrainstruction statistics and
2) interinstruction transition.

Intrainstruction statistics (F1–F7) describe the patterns exe-
cuting a single JTAG instruction. For example, once a DR is
selected, the number of shifting cycles (F3) should be equal
to the length of the DR for either a read or write operation.
However, the DR may be shifted for more or fewer cycles if the
attacker does not know the length of the DR. The second pat-
tern involves the number of TMS transitions (F6), either from
zero to one or from one to zero. The TMS transition is rel-
evant in two circumstances: 1) reset-type instructions require
fewer TMS transitions because they do not select any DR and
2) entering the pause-DR state, which is necessary if shifting
a DR needs to be temporarily suspended, leads to more TMS
transitions. Another relevant pattern is whether the opcode
loaded into the IR corresponds to a valid JTAG function (F7).
Although an r-bit IR can have at most 2r valid opcodes, typ-
ically only a subset of all opcodes correspond to valid JTAG
functions while others remain unused.

Interinstruction transition, named TYPC_TRANSIT (F8),
indicates if the transition from one instruction to the next is
typical. Although there are no strict rules for JTAG instruction
transitions, some transitions are regarded typical if they appear
with high frequency during legitimate use of the JTAG. These
typical transitions are stored in a look-up table (LUT) that is
later used for online prediction.

2) Random Forest Classification: A decision tree is a super-
vised learning model2 used for classification. Each node of a
decision tree represents a “test” on a feature, each branch rep-
resents the outcome of the test, and each leaf node represents a
class label. A classification starts from the root node, and then
descends to branches until it reaches a leaf node. A random
forest is an ensemble of trees and its prediction is based on
majority voting of labels provided by individual trees. Each
tree in the ensemble is trained using a random subset of the
data (called bootstrap aggregating or bagging) [22]. Bagging
is an ensemble technique that can improve accuracy and avoid
overfitting.

JTAG operation is monitored by collecting the eight features
per instruction and supplying them to an on-chip random-
forest classifier at the clock cycle when the IR is updated with

2Supervised learning is a machine learning task, where each training
example consists of an input vector and an output label.

TABLE II
JTAG OPERATION IS CHARACTERIZED USING

EIGHT FEATURES (FEATURE-SET-1)

an instruction. Each tree in the forest provides a prediction that
is then aggregated for the final prediction.

3) Delayed Labeling: As just described, the random forest
makes per-instruction predictions. However, the decision of
whether the JTAG is being operated legitimately is not made
until sufficient evidence is collected. Delayed labeling of the
JTAG operation is prudent because there is likely some natural
variance in legitimate JTAG operation. Specifically, only when
p predictions within a period of q instructions (p � q) indicate
the presence of an attacker, will the JTAG be placed into a
protection mode (details in Section IV). Values for both p and
q are determined empirically from experiments.

Although mitigated by delayed labeling, false positives and
false negatives may still occur. More details about handling
false positives will be discussed in Section VII.

B. SVM Detector

The SVM detector uses a different set of features, named
FEATURE-SET-2, which consists of a sequence of JTAG
instruction opcodes, emphasizing more the sequential char-
acteristics of JTAG operation. The single sequential feature in
FEATURE-SET-1 (i.e., TYPC_TRANSIT) captures the pairwise
transition of JTAG instructions that sometimes falls short of
comprehensively capturing JTAG operation. For example, the
MBIST operation described in Section II requires a sequence
of at least four instructions, revealing that a sequence of n
opcodes (n > 2) can better characterize JTAG operation.

Before the SVM classification, a fundamental check of the
JTAG operation is performed to detect the use of an illegal
opcode. Illegal opcode (corresponding to F7 in Table II) refers
to the bits loaded into the IR that do not correspond to any
valid JTAG function. This two-tiered approach is justified since
an attacker with minimal knowledge of the JTAG functions
will make basic mistakes attempting to operate the JTAG.

If inputs to the JTAG TAP controller pass the fundamental
check, then overlapping, sequential instructions of length n
are supplied to an SVM classifier for identification of JTAG
misuses. The length of the opcode sequence, n, is determined
empirically from experiments.

Similar to the random forest, the SVM detection also con-
sists of offline learning and online prediction. For the offline
learning, the opcode sequences extracted from JTAG operation
are used for training an SVM classifier. For the online predic-
tion, the JTAG opcode sequences are collected in real-time
in an overlapping manner using a fixed-size sliding window,

Authorized licensed use limited to: Zhejiang Tmall Technology Co.Ltd.. Downloaded on July 31,2021 at 04:53:23 UTC from IEEE Xplore. Restrictions apply.

REN et al.: IC PROTECTION AGAINST JTAG-BASED ATTACKS 153

Fig. 3. Opcode sequences (n = 4) extracted from the OpenSPARC T2 are
visualized using PCA.

(a) (b)

Fig. 4. (a) SVM model separates two classes of samples by finding a decision
boundary and maximizing the margin. (b) One-class SVM is trained based
solely on normal samples and finds regions, where samples form high-density
clusters.

and classified by the SVM classifier. The prediction is based
on the opcodes of both the current instruction and the prior
(n−1) instructions. In addition, the delayed labeling described
in Section III-A3 is also used.

Opcode sequences of length n = 4 are visualized using
principal component analysis (PCA). Specifically, the opcode
sequences, which are 4-D data samples, are “rescaled” based
on a set of linearly uncorrelated variables (called principal
components). Fig. 3 shows the rescaled opcode sequences
in terms of the first (x-axis) and the second (y-axis) princi-
pal components, respectively. It demonstrates that attacks and
legitimate operations not only share a nonlinear boundary but
also have overlapping regions.

The SVM detection starts with building a training set from
JTAG opcode sequences, each of which is labeled as either
legitimate or attack. The training of an SVM classifier involves
finding a decision boundary that separates the two classes of
samples such that the smallest distance between the decision
boundary and any of the samples is maximized as Fig. 4(a)
illustrates. The decision boundary is modeled as

y(x) = wTφ(x) + b (1)

where x is a sample, y(x) is the prediction of x, and φ(x)
represents some feature-space transformation. The decision
boundary, characterized by w and b, is determined by solving

argmin
w,ξ

1

2
‖w‖2 + C

N∑

i=1

ξi

s.t.
∥∥ti
(
wTφ(xi)

)+ b
∥∥ ≥ 1 − ξi, i = 1, . . . , N (2)

where xi is the i-th training sample, ti is the true label (either
1 or −1) of xi, ξi is a slack variable that allows samples to

Fig. 5. Opcode sequence collected in real-time is compared with three rep-
resentative sequences, namely 7-1-3, 2-3-1-4, and 8-8-7, from the first opcode
to the last. Each representative sequence is associated with a local score that
may increment, saturate (saturation score s = 5 in this example) or reset,
according to the matching result. A global score, equal to the maximum local
score, serves as an indicator of the security status of the JTAG.

be misclassified with a penalty, and C > 0 controls the trade-
off between the slack variable penalty and the margin. This
optimization problem is convex so the solution can be derived
from its dual representation. More details concerning solving
a convex problem can be found in [42]. The decision boundary
is formulated as

y(x) = sgn

(
∑

i∈S

aitik(x, xi) + b

)
(3)

and

b = 1

NS

∑

i∈S

⎛

⎝ti −
∑

j∈S

ajtjk
(
xi, xj

)
⎞

⎠ (4)

where S denotes the set of support vectors (SVs), NS repre-
sents the number of SVs, and k(x, x′) = φ(x)φ(x′) denotes the
kernel function in terms of x and x′. In this paper, the radial
basis function (RBF) is used as the kernel function.

To detect unknown attacks, a one-class SVM is also evalu-
ated because it is commonly used for novelty detection [43].
The goal behind the one-class SVM is then to capture regions
in the input space where samples form high-density clusters,
as shown in Fig. 4(b).

C. Representative-Based Anomaly Detector

The prior detectors are trained using both legitimate JTAG
operations and attacks. However, collecting all types of attacks
is not a trivial task because new attacks are likely arising. We
propose an anomaly detector that uses a set of typical JTAG
sequences as representatives of legitimate JTAG operation, and
any deviating operation will be regarded as an attack.

1) Derivation of Representative Sequences: A set of
instruction sequences are derived to represent legitimate JTAG
operation. Initially, all instruction sequences with length three
to six are derived from already-collected legitimate JTAG oper-
ations (analysis of legitimate uses of the JTAG reveals that
most operations for the OpenSPARC T2 contain three to six
instructions). The representation sequences are derived as fol-
lows. First, the frequency of appearance for each sequence
is counted, with sequences of frequency <t discarded. Then,
redundant sequences are identified through checking if one

Authorized licensed use limited to: Zhejiang Tmall Technology Co.Ltd.. Downloaded on July 31,2021 at 04:53:23 UTC from IEEE Xplore. Restrictions apply.

154 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 1, JANUARY 2019

TABLE III
FOR EACH TYPE OF DR, CONTROLLABILITY AND OBSERVABILITY

ARE PROHIBITED THROUGH SPECIFIC ACTIONS

sequence is contained in another with similar frequency.
For such cases, the shorter subsumed sequence is discarded.
Finally, redundancy is further reduced through greedy search,
meaning that, the sequence with the least impact on the detec-
tion accuracy is discarded in each iteration. The removal
proceeds until the detection accuracy shows a significant drop.

2) Attack Detection: The security status of the JTAG is
measured using a score that indicates whether the JTAG oper-
ation corresponds to any representative sequence. Specifically,
each representative sequence is associated with a score that
measures its matching degree with the JTAG operation, with
the maximum score selected as a global one. Fig. 5 illus-
trates how the global score is calculated. The score associated
with each representative sequence (named a local score) is
initialized to zero when the chip is powered on. Then opcode
sequences are collected in real-time and compared with each
representative sequence from the first opcode to the last. Every
time an opcode match is observed, the local score increments
(or remains the same if it has saturated); otherwise, it is reset
to zero. The saturation value for a local score, s, is predefined
and determined empirically from experiments.

Due to the variance that naturally occurs in legitimate JTAG
operation, delayed labeling described in Section III-A3 is
employed. Specifically, operation of the JTAG is labeled as
an attack only if the global score stays saturated for no fewer
than p instructions out of q consecutive instructions.

IV. JTAG PROTECTION

Upon detection of an attack, the JTAG needs to be protected,
to prevent further attacks. However, if the attacker knows
which operation triggers the protection, then he/she may avoid
that operation in future attacks (to other chips). Thus, that par-
ticular triggering operation needs to be obfuscated. In order
to achieve this objective, access to DRs is modified as shown
in Fig. 6. It prevents the chip from being controlled/modified,
and also prevents on-chip data from being observed.

Fig. 6 shows four types of DRs, i.e., capture-only DR,
update-only DR, capture/update DR, and scan-accessible DR.
A capture-only DR is typically connected to a shadow reg-
ister and data is read in parallel from the shadow register
to the scan register within the capture-DR state. An update-
only DR allows its data to be updated from the scan register
to the shadow register within the update-DR state. A cap-
ture/update DR allows data transferring in both directions. A
scan-accessible DR is not connected to any shadow register,
so the operations of capture and update are not needed.

Fig. 6. To protect the JTAG, access to DRs is modified as shown in red.

Table III lists how controllability and observability are pro-
hibited for each type of DR. For a capture-only DR, a decoy
shadow register and a linear-feedback shift register (LFSR)
are employed to disable observability. More precisely, upon
detection of an attack, connection to the actual shadow regis-
ter is disabled; instead, the DR captures data from the decoy
shadow register. Further, the data in this decoy shadow reg-
ister is provided by the LFSR. An LFSR is commonly used
as a pseudo-random number generator for stream ciphers due
to its low hardware overhead, long period, and uniformly dis-
tributed output stream [44]. For example, the period of a 32-bit
LFSR can be over 109. As shown in Fig. 6, the hardware of
an LFSR is a shift register whose leftmost bit is driven by the
XOR of some bits of the shift register. The data in the decoy
shadow register is updated by the LFSR only when the data in
the actual shadow register is updated. The attacker may find
that the data supplied via the TDO is random, but it is still
hard to tell when the data became random because the attacker
does not know what to expect. Thus, the LFSR is effective in
preventing the attacker from knowing which operation trig-
gers the protection. For an update-only DR, controllability is
disabled through disabling the update operation. For a cap-
ture/update DR, a decoy shadow register is employed. Upon
detection of an attack, connection to the actual shadow reg-
ister is disabled; instead, the decoy register responds to the
operations of capture and update. Because the decoy shadow
register is stand-alone, it cannot control or observe any on-chip
data. For a scan-accessible DR, because data should neither be
shifted in nor out, the shift operation is disabled. A decoy DR
and the LFSR are used instead to support the shift operation
and supply data to the TDO. The decoy DR is a shift register
that imitates the shift operation of the normal DRs. Once the
JTAG enters the protection mode, the decoy DR and the LFSR,

Authorized licensed use limited to: Zhejiang Tmall Technology Co.Ltd.. Downloaded on July 31,2021 at 04:53:23 UTC from IEEE Xplore. Restrictions apply.

REN et al.: IC PROTECTION AGAINST JTAG-BASED ATTACKS 155

Fig. 7. Detection accuracy is evaluated iteratively, and in each iteration, the
sequence with the least impact on the detection accuracy is discarded.

instead of the normal DR, are used for shifting data in and out.
The selection of either the decoy DR or the LFSR relies on
the comparison between the number of shifting clock cycles
and the length (L) of the DR. The LFSR supplies bits to the
TDO for the first L clock cycles, while the decoy DR provides
bits after L clock cycles, allowing the serial input supplied by
the user (via the TDI) to be observed at the TDO after an
expected delay (L clock cycles). To achieve this function, the
decoy DR needs to be as long as the longest scan-accessible
DR and its length should always correspond to the DR that is
being selected in real-time.

V. EXPERIMENTS

Three sets of experiments are performed to evaluate
the capability of detecting known, unknown, and disguised
attacks, respectively. The experiments are performed using
the OpenSPARC T2 microprocessor3 [15]. A set of legiti-
mate JTAG operations (including 767 programs that contain
125 017 instructions) are generated based on the official docu-
mentation, while a variety of attacks (including 1092 programs
that contain 154 980 instructions) are created based on the
strategies described in Table I.

It is worth noting that, for the representative-based anomaly
detector, the representative sequences need to be created using
the process described in Section III-C. The result shows that
after discarding sequences of frequency <40 and remov-
ing redundancy through similarity check, only 407 (<10%)
sequences are left. These sequences are further examined
through greedy search, as shown in Fig. 7. More precisely,
the performance of the remaining sequences is evaluated itera-
tively, and in each iteration, the sequence with the least impact
on the detection accuracy is discarded. The result demonstrates
that 200 representative sequences provide similar accuracy as
the original, larger set of sequences.

A. Detecting Known JTAG Attacks

In this set of experiments, the capability of detecting known
JTAG attacks is evaluated. In particular, for the random for-
est and the SVM, ten-fold cross-validation is performed (i.e.,
all data is partitioned into ten subsets of the same size; nine
subsets are used for training the classifier, and the tenth for

3The OpenSPARC T2 platform is used for experiments because of its well-
documented JTAG functions. Nonetheless, the detectors proposed in this paper
are generic, not specific for the OpenSPARC T2 platform.

(a) (b)

(c)

Fig. 8. Performance of detecting known attacks is evaluated for various algo-
rithms using ten-fold cross-validation, with the results plotted as ROC curves.
JTAG operation is characterized using (a) FEATURE-SET-1, (b) FEATURE-
SET-2, and (c) representative sequences, respectively. The AUC measurements
show that the random forest outperforms the other algorithms.

(a) (b)

Fig. 9. Average classification margin and OOB error are measured to deter-
mine the number of trees. According to the results, three trees demonstrate a
significant performance gain at the cost of a modest hardware overhead.

evaluating the accuracy of the resulting classifier; each sub-
set is used once for testing, with the final accuracy being
averaged).

The receive operating characteristic (ROC) curve [45], plot-
ted as the true positive rate (TPR) in terms of the false positive
rate (FPR) at various threshold settings, is used for evaluating
the performance of making per-instruction prediction (Fig. 8).
The ROC curves are plotted for different algorithms, namely
the random forest (three bagged trees in the forest), SVM
(with RBF kernel), neural network (one hidden layer consist-
ing of ten neurons), k-nearest-neighbor (k-NN, k = 3) and the
representative-based detector, using both FEATURE-SET-1 and
FEATURE-SET-2. The ROC curves in Fig. 8(a) and (b) are plot-
ted using MATLAB built-in functions (i.e., through varying the
number of trees that determines the voting result for the ran-
dom forest, varying the classification threshold from −1 to 1

Authorized licensed use limited to: Zhejiang Tmall Technology Co.Ltd.. Downloaded on July 31,2021 at 04:53:23 UTC from IEEE Xplore. Restrictions apply.

156 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 1, JANUARY 2019

TABLE IV
JTAG ATTACKING PROGRAMS ARE DIVIDED INTO EIGHT CATEGORIES,

EACH ONE TARGETING A DIFFERENT IC COMPONENT

for the SVM and the neural network, and varying the value of
k for k-NN), while the ROC curve for the representative-based
detector in Fig. 8(c) is plotted through varying the saturation
score s from 1 to 20. Additionally, for FEATURE-SET-2, the
optimal value of opcode sequence length, through simulation,
is four. In order to compare the performance of the differ-
ent algorithms, the area under the curve (AUC) is used. AUC
measures the capability of a binary classifier to make a cor-
rect prediction for a random sample. The results indicate that
the random forest outperforms the other algorithms using both
FEATURE-SET-1 and FEATURE-SET-2.

For FEATURE-SET-1, a possible explanation for the ran-
dom forest outperforming the other algorithms resides in the
fact that the features in FEATURE-SET-1 are weakly correlated
to each other. A random forest can then easily distinguish
an attack from legitimate operations by dividing the hyper-
space into subspaces using parallel-to-axis boundaries. To
demonstrate this, the linear pairwise correlations of the fea-
tures (measured by Pearson correlation coefficient [46]) in
both FEATURE-SET-1 and FEATURE-SET-2 were calculated,
revealing that the average pairwise correlation of the fea-
tures in FEATURE-SET-1 (0.081) is significantly lower than
FEATURE-SET-2 (0.442). Another explanation for the superior
performance of the random forest is that the random forest,
consisting of an ensemble of trees, benefits from the use of
bootstrap aggregation.

The number of trees in the forest is decided by the trade-
off between performance gain and hardware overhead. Fig. 9
shows the performance gain of adding more trees to the forest
using two metrics, namely average classification margin [47]
and out-of-bag (OOB) error [48]. For a binary classifica-
tion problem, classification margin measures the difference
between the probabilities of labeling a sample correctly and
incorrectly, while OOB error is the mean prediction error on
each training sample xi using only the trees trained without xi.
Here, the number of trees is set to three, which reduces the
OOB error from 8.2% (obtained with a single tree) to 6.7%.

B. Detecting Unknown JTAG Attacks

In this set of experiments, the performance of detecting
unknown JTAG attacks is evaluated. An unknown JTAG attack
is one that targets a different IC component or exploits a scan-
based strategy not used in the training phase. In the first group
of experiments, the attacking programs are divided into eight
categories based on the components they target (as listed in
Table IV), while in the second group, the programs are divided
into nine categories based on the strategies they exploit (as
listed in Table I).

For the first group of experiments, the capability of detect-
ing attacks that target a new IC component is evaluated
using different algorithms (see Table V). The extracted opcode
sequences (n = 4) are processed by each algorithm, and two
metrics, namely accuracy of identifying legitimate operation
(AL) and accuracy of identifying unknown attacks (AU), are
used for evaluating the performance. Here, accuracy is defined
as the percentage of correct predictions out of all evaluated
opcode sequences. The first set of algorithms involve two-class
learning algorithms, namely SVM, neural network (one hid-
den layer consisting of ten neurons), k-NN (k = 3), and the
random-forest detector based on FEATURE-SET-1. For these
algorithms, seven out of eight categories of attacks in Table IV,
and all cases of legitimate operations, are simulated using ten-
fold cross-validation. The second set of algorithms involve
one-class learning algorithms, including the representative-
based detector, a one-class SVM (ν = 0.1), and a one-class
k-NN (radius = 2). A one-class k-NN identifies an opcode
sequence by searching for the neighboring area (radius = 2)
centered by the opcode sequence; if at least one training sam-
ple resides within the area, the opcode sequence is then labeled
legitimate. For these algorithms, 90% of the legitimate opcode
sequences are used for training, while the remaining 10% are
used for evaluating AL. To calculate AU , each category of
the component attack is evaluated as an unknown attack. The
next approach, named “match”, simply uses the instruction
sequences described in the OpenSPARC T2 documentation as
legal ones and rejects any sequence that does not conform.

As demonstrated in Table V, the SVM and the
representative-based anomaly detector have more balanced
performance in identifying legitimate operation and unknown
attacks, revealing that they can not only tolerate the vari-
ances occurring during legitimate JTAG operation but also
detect unknown attacks. A neural network and k-NN are capa-
ble of identifying either legitimate operation or an attack,
but not both. The overall performance of a one-class SVM
and a one-class k-NN is worse than an SVM, especially for
detection of unknown attacks. A likely explanation for this
outcome is that having some general knowledge of attacks is
quite beneficial for detecting new types of attacks. The match
approach fails to identify variances exhibited by legitimate
operation because the matching rule, by definition, simply
does not allow for any variance. The shortcoming of the
random-forest detector based on FEATURE-SET-1 resides in
the poor accuracy of detecting unknown attacks; however, it
performs better than the SVM detector for identifying attacks
targeting C1. A likely explanation is that checking-the-basic-
profile of the JTAG may result in frequent easy-to-detect
mistakes because the attacker is assumed to have no prior
knowledge of the private JTAG functions. The random-forest
detector performs better in that situation because various
features, other than solely the sequential order of JTAG
instructions, are used for characterizing legitimate JTAG
operation.

For the second group of experiments, the capability of
detecting attacks that exploit a different strategy is evaluated in
a similar manner. Table V shows again that the SVM and the
representative-based detector have better overall performance.

Authorized licensed use limited to: Zhejiang Tmall Technology Co.Ltd.. Downloaded on July 31,2021 at 04:53:23 UTC from IEEE Xplore. Restrictions apply.

REN et al.: IC PROTECTION AGAINST JTAG-BASED ATTACKS 157

TABLE V
ACCURACY OF DETECTING LEGITIMATE OPERATION (AL) AND UNKNOWN ATTACKS (AU) THAT TARGET DIFFERENT IC COMPONENTS (C1–C8) AND

EXPLOIT DIFFERENT STRATEGIES (S4–S9) ARE EVALUATED FOR VARIOUS ALGORITHMS (OPCODE SEQUENCE LENGTH n = 4). (EACH COLUMN

LABELED Ci HAS TARGET COMPONENT Ci OF TABLE IV AS THE UNKNOWN ATTACK, THAT IS, NOT USED DURING TRAINING. EACH COLUMN

LABELED Sj EXPLOITS STRATEGY Sj OF TABLE I AS THE UNKNOWN ATTACK.) THE HIGHEST AL AND AU IS SET IN BOLD FOR EACH Ci AND Sj .
ACCORDING TO THE RESULTS, THE SVM AND THE REPRESENTATIVE-BASED ANOMALY DETECTOR SHOW MORE BALANCED PERFORMANCE

(a) (b)

Fig. 10. (a) For the SVM detector, the detection accuracy (y-axis), as
a function of opcode sequence length (x-axis), is evaluated for legitimate
operation (AL) and unknown attacks (AU). (b) For the representative-based
anomaly detector, the detection accuracy (y-axis), as a function of s (x-axis),
is evaluated for legitimate operation and unknown attacks.

Fig. 10(a) demonstrates that, for the SVM detector, the accu-
racy of identifying legitimate operation and unknown attacks
trends in opposite directions when the opcode sequence length
n increases. The accuracy is an average of each category of
attacks weighted by its population size. Fig. 10(a) reveals that
a larger n is preferable for detecting unknown attacks, but at
the cost of more false positives. It also reveals that the length
of most legitimate JTAG operations is naturally less than seven
or eight. The selection of the value for n depends on the cost
ratio of a false positive and a false negative. If a false positive
and a false negative have identical cost, then the optimal value
for n is four or five.

For the representative-based anomaly detector, the accuracy
of identifying legitimate operation and unknown attacks is
affected by the saturation score s in a similar manner as shown
in Fig. 10(b). Fig. 10(b) demonstrates that a higher s is prefer-
able for detecting unknown attacks, but at a significant cost
of false positives. If a false positive and a false negative have
equal cost, then the optimal value for s is three or four.

TABLE VI
TO EVALUATE THE DELAYED LABELING, THE ACCURACY OF

CLASSIFYING INSTRUCTION WINDOWS (LABELED AS “DELAYED”) IS

COMPARED WITH THE ACCURACY OF PER-INSTRUCTION

CLASSIFICATION (LABELED AS “PER-INSTR”) FOR THE THREE

DETECTORS. THE VALUES FOR q AND p SHOWN IN THE TABLE ACHIEVE

BETTER ACCURACY THAN OTHER VALUES ACCORDING TO SIMULATION

RESULTS. THE DELAYED LABELING DEMONSTRATES AN IMPROVEMENT

IN CLASSIFICATION ACCURACY

C. Delayed Labeling and Disguised Attacks

This set of experiments aim to evaluate the effectiveness
of delayed labeling, i.e., the labeling of JTAG operation as
legitimate or as an attack based on the predictions of q con-
secutive instructions. Similar to Section V-B, one out of eight
categories of attacks in Table IV is treated as unknown attack,
while the remaining seven categories are treated as known
attacks. In the experiments, seven known categories of attacks,
together with a half of randomly chosen legitimate JTAG pro-
grams (described in the beginning of Section V), are used for
training the classifier. The unknown category of attacks and
the other half legitimate JTAG programs are used for evalua-
tion, in which the prediction is made for every nonoverlapping
window of q instructions. More precisely, if a window of q
instructions contains no fewer than p positive per-instruction
predictions, then the corresponding window is labeled as an
attack; otherwise, it is labeled as legitimate. Accuracy is mea-
sured using the percentage of correctly classified windows,
which is then compared with the accuracy of per-instruction
classification (see Table VI). The comparison shows that
delayed labeling improves detection accuracy for all
detectors.

Authorized licensed use limited to: Zhejiang Tmall Technology Co.Ltd.. Downloaded on July 31,2021 at 04:53:23 UTC from IEEE Xplore. Restrictions apply.

158 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 1, JANUARY 2019

p (q=5)
1 2 3 4 5

A
cc

ur
ac

y

0

0.5

1
Random Forest

p (q=5)
1 2 3 4 5

A
cc

ur
ac

y
0

0.5

1
SVM

legitimate undisguised disguised

p (q=5)
1 2 3 4 5

A
cc

ur
ac

y

0

0.5

1
Representative-based

Fig. 11. Accuracy of identifying disguised attacks is compared with the
accuracy of identifying legitimate operation and undisguised attacks for
the random-forest detector, the SVM detector, and the representative-based
anomaly detector. The results show that a larger window increases the risk of
a disguised attack.

The delayed window, however, may be used by the attacker
to insert malicious instruction sequences. If an attacker knows
how to operate a portion of the private JTAG functions but
not all. Then, to discover the unknown functions, the attacker
will attempt to disguise attacks through interleaving them
with already-known legitimate sequences. For example, if an
attacker loads one unknown instruction into the JTAG after
every nine legitimate ones, then it may escape the detection
because 90% of the instructions seem “legitimate”. To ver-
ify this assertion, an experiment is performed as described
next. An attacker is assumed to know how to operate control
registers (shown as C3 in Table IV). To disguise the attacks,
a legitimate operation of the control registers (with opcode
sequence length = 9) is inserted into attacking programs after
every segment of l instructions, where l varies from one to
three randomly. These disguised attacking programs are then
cut into sequences of N instructions. Here, N is set to 14 so
that each N-instruction sequence contains at least one com-
plete attacking segment. The accuracy of identifying disguised
attacks is compared with the accuracy of identifying legitimate
operation and undisguised attacks (Fig. 11). As p increases,
the detection becomes more conservative, which means that
more JTAG operations are labeled as legitimate and fewer as
attacks. The results show that the SVM detector has the most
balanced performance in identifying legitimate operation, dis-
guised attacks, and undisguised attacks. Besides, the setting
of (p = 4, q = 5) achieves better accuracy in detecting dis-
guised attacks (94%) than other settings. A possible reason
for the SVM detector being able to identify disguised attacks
can be described as follows. SVM classification is based on a
sequence of n instructions, so each per-instruction prediction
considers (n − 1) prior instruction transitions. A back-and-
forth jump between the unknown functions and the known
ones may cause at least n positive per-instruction predictions
that are easy to be detected by delayed labeling.

VI. HARDWARE IMPLEMENTATION OF DETECTORS

The proposed detectors are implemented within the
OpenSPARC T2 design in register-transfer level (RTL).
Further, the detectors are implemented using the Xilinx
Zynq7000 ZC706 FPGA platform.

(a)

(b)

(c)

Fig. 12. Architecture of the (a) random-forest detector, (b) SVM detector,
and (c) representative-based anomaly detector.

A. RTL Design Within OpenSPARC T2

Fig. 12(a) shows the architecture of the random-forest detec-
tor. The parameters of the learned forest are loaded into a
RAM when the chip is powered on. Since the access to non-
volatile memory only occurs at the power-on stage, the online
classification latency is not impacted. A tree unit employs the
architecture of a universal tree node described in [49]. During
the classification, one node is processed per clock cycle and
all trees are processed in parallel, so the required number of
clock cycles is equal to the depth of the deepest tree. It is
noted that a continuous feature is compared with a threshold,
while a discrete feature is compared with a set of values (i.e.,
v1, v2, . . .). The size of the RAM storing the learned forest
relies on the number of trees and the size of each tree. As
explained in Section V-B, the number of trees is set to three.
In this paper, the size of the RAM is 3 KB assuming at most
256 nodes per tree, and the latency for classifying a JTAG
instruction is eight clock cycles.

Fig. 12(b) shows the architecture of the SVM detector.
When the chip is powered on, the parameters of the learned
SVM (i.e., each SVi and each corresponding weight αi) are
loaded into a RAM (named SVM-RAM). The operation of
the JTAG TAP controller is monitored by both a fundamental-
check module and the SVM classifier. The SVM classifier
employs a fully pipelined architecture that consists of distance

Authorized licensed use limited to: Zhejiang Tmall Technology Co.Ltd.. Downloaded on July 31,2021 at 04:53:23 UTC from IEEE Xplore. Restrictions apply.

REN et al.: IC PROTECTION AGAINST JTAG-BASED ATTACKS 159

Fig. 13. Area of the SVM detector and the MSE of the classification results
(compared to software) are impacted by the number of bits for αi (n_alpha_bit)
and the RBF values (n_rbf_bit).

TABLE VII
SYNTHESIS RESULTS ARE COMPARED FOR THE THREE DETECTORS

computation, an RBF kernel computation, a multiplication, and
an addition. The distance computation employs L1-norm and
the computation of the RBF kernel employs an LUT (loaded
in RBF-RAM) that is built in advance by calculating all pos-
sible values. It is noted that the SVM classification results
computed by hardware may differ from software due to lim-
ited precision for αi and the RBF values. Fig. 13 shows that
a higher precision reduces the mean squared error (MSE) for
the classification results (compared to software), but at the
cost of more chip area. In the implementation, both αi and the
RBF value are represented using 12 bits, because the 12-bit
representation reduces the MSE significantly to a low level
(3 × 10−6) when compared to the representations with fewer
bits.

The chip area required by an SVM classifier depends on n
(i.e., opcode sequence length) in two ways. First, n affects the
width of the pipeline linearly since it represents the dimension
of data. Second, the size of SVM-RAM relies on n which
affects both the number of SVs and the size of each SV. A
larger n produces more SVs, that is, for example, the numbers
of SVs produced by n = 3, 4, 5, and 6 are 763, 844, 901,
and 962, respectively. However, because these numbers are
between 512 and 1024, the number of rows remains 1024
(each row stores an SV). Consequently, the area for the SVM-
RAM is linearly dependent on n. The size of the RBF-RAM
also depends on n linearly. To summarize, the relative area
overhead in terms of n is: 0.75 (n = 3), 1 (n = 4), 1.25
(n = 5), and 1.5 (n = 6).

Fig. 12(c) shows the architecture of the representative-based
anomaly detector. Each representative JTAG sequence is asso-
ciated with a counter that records a local matching score.
A global score is then computed by selecting the maximum
local score. The structure of the select-max function utilizes

TABLE VIII
FPGA RESOURCE UTILIZATION AND POWER CONSUMPTION ARE

EVALUATED FOR THE THREE DETECTORS

a multistage pipeline due to a large number of representative
sequences. The size of the design depends on the number of
representative sequences (200 representatives are used in this
paper as elaborated in the beginning of Section V). The latency
for identifying a JTAG instruction is six clock cycles assuming
that the select-max function has four stages.

Table VII shows the synthesis results using Synopsys
Design Compiler with a 0.18 μm library. The random-forest
detector consumes the largest chip area, while the SVM detec-
tor requires the most clock cycles for making a prediction. The
area of the detectors are acceptable compared to the whole
design considering that the OpenSPARC T2, due to its com-
plex testing/debugging functions, is likely to require a complex
detector. However, when compared to the JTAG, the detectors
are much larger, namely 57, 35, and 5 times, respectively. This
is as expected because a classical JTAG, typically consisting
of a TAP controller and DRs (excluding scan chains), is small.

B. FPGA Implementation

The detectors are also evaluated using the Xilinx Zynq7000
ZC706 FPGA board. The on-board ARM processor is used
for operating the detector. Specifically, the processor commu-
nicates with the detector through an AMBA AXI protocol [50]
included in the Vivado Design Suite [51]. The communication
interface contains a set of 32-bit registers; a user can oper-
ate the detector (or collect results from the detector) through
writing to (or reading from) the registers using a C program.
More, the processor and the detector are synchronized through
handshaking.

To support simulation, in addition to the detector, the JTAG
TAP controller of the OpenSPARC T2 and three RAMs storing
JTAG inputs, namely TDI, TMS, and TRST, are also imple-
mented in the FPGA. Two clocks with different frequencies
are also used. The detector operates with a faster clock than the
JTAG TAP controller such that the classification for a JTAG
instruction can be completed before the next instruction is
supplied.

Table VIII shows the FPGA resource utilization and the
power consumption estimated by the Vivado Design Suite
through post-implementation analysis. The resource utilization
is evaluated using LUTs, LUTRAM, and flip-flops (FFs), all of
which are based on configurable logic blocks and, therefore,
are not reflected in Fig. 12. The results show that the ran-
dom forest and the SVM detectors utilize a similar amount
of LUTs and FFs, but the random forest detector requires
more RAM. The results also show that the representative-based
detector consumes more LUTs and FFs but less RAM. This is

Authorized licensed use limited to: Zhejiang Tmall Technology Co.Ltd.. Downloaded on July 31,2021 at 04:53:23 UTC from IEEE Xplore. Restrictions apply.

160 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 1, JANUARY 2019

because 1) the representative sequences are stored in shift reg-
isters instead of an RAM and 2) each representative sequence
requires independent logic for sequence comparison.

VII. DISCUSSION

Other issues, including false positives, scalability of the
detectors, collection of new attacks, and possible attacks to
the detectors, are discussed in this section.

A. False Positives

A false positive occurs when a legitimate user is classified
as an attacker. It causes inconvenience for legitimate users
because the JTAG will be permanently protected in the case
of false positives. Fig. 8 shows a tradeoff between the FPR and
the TPR, meaning that a reduction of the FPR leads to a higher
probability that an attacker escapes detection. The delayed
labeling is an effective method for mitigating false positives.
For example, in Fig. 8(b), an FPR of 3.2% is observed for the
SVM if the TPR is 96.2%, but a delayed window with four
instructions can reduce the FPR to 2.1% and raises the TPR
to 98.1%. Considering that an FPR of 2.1% is small, and that
in-field uses of JTAG involve only a few scenarios (e.g., flash
programming and software debugging) and are typically not
frequent [52], [53], the JTAG is not likely to enter the protec-
tion mode. In other words, if used legitimately, the JTAG is
expected to be accessible for a long enough period.

B. Scalability

As new types of attacks emerge, the performance and the
size of the detectors may be impacted. We conduct the fol-
lowing experiment as a preliminary evaluation. First, attacks
S4–S9 in Table I are gradually added to the training set for
both the random forest and the SVM. Next, the performance
of both detectors are evaluated using ten-fold cross-validation.
The size of the random forest is evaluated using the average
number of nodes per tree, while the SVM size is evaluated
using the number of SVs. The results in Fig. 14 demonstrate
an overall increase of size and a decrease of performance as
more types of attacks are used in classifier training. However,
the impact of different attacks varies. The size and the accuracy
change dramatically for the first two types of attacks (i.e., S4
and S5); then they become more stable as the variety of attacks
increases. S6 is more likely a hard-to-detect attack because it
causes a significant degradation in accuracy.

C. Update of Detectors

Although the detectors demonstrate a potential of detecting
unknown attacks, it still does not guarantee that the detec-
tors can identify all types of attacks not included in training.
Collecting JTAG attacks is an important but difficult process
because: 1) hardware attackers typically do not publish their
attacks and 2) unknown attacks always exist. Nevertheless,
hardware companies should still be aware of potential attacks
not only for mitigating the current vulnerability but also for
improving security of future designs. We suggest that hard-
ware companies build a database of JTAG attacks and collect

(a) (b)

Fig. 14. Performance and the size of the (a) random forest and (b) SVM
are impacted by the variety of attacks used in classifier training.

potential attacks using similar strategies as anti-virus software,
such as analyzing user report and periodic security examina-
tion. The operation that triggers the protection mode can also
be saved in on-chip memory and then collected via software
or scan chains for further analyses.

When new attacks are collected, it needs to be checked if
they can be effectively detected by the existing detector with
high confidence. If not, the detector is retrained and updated
to the on-chip memory. This can be achieved by incorporating
the parameters of the detector into firmware that is typically
upgraded via USB [54] or JTAG [55]. To ensure security of
firmware upgrade, two issues need to be considered. First,
only authorized firmware can be upgraded. This can be real-
ized using firmware signature [56], i.e., generating a unique
hash code for each authorized copy and appending it to the
firmware when distributed. The other issue involves leakage
of firmware contents. This can be mitigated by encrypting
the firmware using cryptographic blocks [57]. The decryp-
tion of firmware needs to be done on chip, which however
requires additional chip area. Since firmware, as well as its
encryption/decryption, is ubiquitous for electronic systems,
the overhead caused by incorporating detector parameters into
firmware can be amortized.

D. Possible Attacks to Detectors

The proposed detectors identify JTAG attacks through
examining JTAG operation over time. However, their effec-
tiveness can be circumvented in following scenarios. The first
scenario involves an attacker that has full knowledge of the
private JTAG functions of what they are and how they should
be operated. In this scenario, the detectors have no effect to the
attacker at all. The second scenario involves an attacker that
can perform attacks on multiple chips and is therefore more
likely to escape detection. Nevertheless, it is still challenging
and costly for the attacker to recognize that the JTAG has
entered into the protection mode. The third scenario assumes
the attacker has obtained the parameters of the detector (i.e.,
the tree nodes of the forest, the SVs and their α for the SVM,
or the representative instruction sequences). In this scenario,
the attacker can escape detection easily. However, if the param-
eters are not leaked, then the attacker can only reverse engineer
them using brute-force guessing. Hence, it is critical to avoid

Authorized licensed use limited to: Zhejiang Tmall Technology Co.Ltd.. Downloaded on July 31,2021 at 04:53:23 UTC from IEEE Xplore. Restrictions apply.

REN et al.: IC PROTECTION AGAINST JTAG-BASED ATTACKS 161

TABLE IX
PROPOSED DETECTORS ARE COMPARED WITH OTHER JTAG PROTECTION TECHNIQUES. IN THE COLUMNS OF SECURITY AND OVERHEAD, MORE +’S

INDICATE BETTER SECURITY AND MORE OVERHEAD, RESPECTIVELY

leakage of the data stored in the NVM and the logic of the
detector.

The effectiveness of the JTAG protection architecture may
also be circumvented in two scenarios. For the first sce-
nario, a read-after-write operation may exhibit inconsistent
results, which can be noticed by an attacker. The second sce-
nario involves the random bit stream supplied by the LFSR.
However, these two scenarios do not necessarily reveal an
evidence of the JTAG under protection because an attacker
is assumed to have no prior knowledge of the private JTAG
functions. Under this assumption, an attacker neither recog-
nizes an accidentally executed read-after-write operation nor
knows that a selected DR should provide certain data rather
than the observed bits.

E. Comparison to Other Techniques

The learning-based detectors proposed in this paper are
compared with other JTAG protection techniques as shown in
Table IX. It is noted that the proposed detectors are orthogo-
nal with some other techniques (such as JTAG encryption),
and thus they can be combined to achieve complementing
protection for the JTAG.

VIII. CONCLUSION

Security is becoming an important concern for integrated
systems because attacks via the JTAG reveal possibilities of
improperly acquiring on-chip data and IP design. In this paper,
three detectors examining JTAG operation and a secure JTAG
architecture are proposed to protect the JTAG from attacks,
assuming that an attacker only has access to JTAG port and
is unaware of the private JTAG functions. An IC designer can
select any of the detectors based on the requirements for secu-
rity and overhead. The detector is general for all JTAGs, but
the parameters are not (due to different debugging functions
and instruction opcodes), meaning that for a different JTAG
design, a new set of parameters need be derived.

REFERENCES

[1] S. Skorobogatov and C. Woods, “Breakthrough silicon scanning dis-
covers backdoor in military chip,” in Proc. Int. Workshop Cryptograph.
Hardw. Embedded Syst., 2012, pp. 23–40.

[2] Z. Basnight, J. Butts, J. Lopez, and T. Dube, “Firmware modification
attacks on programmable logic controllers,” Int. J. Crit. Infrastruct.
Protect., vol. 6, no. 2, pp. 76–84, 2013.

[3] I. M. F. Breeuwsma, “Forensic imaging of embedded systems using
JTAG (boundary-scan),” Digit. Invest., vol. 3, no. 1, pp. 32–42, 2006.

[4] D. G. Abraham, G. M. Dolan, G. P. Double, and J. V. Stevens,
“Transaction security system,” IBM Syst. J., vol. 30, no. 2, pp. 206–229,
1991.

[5] B. Yang, K. Wu, and R. Karri, “Scan based side channel attack on
dedicated hardware implementations of data encryption standard,” in
Proc. Int. Test Conf., 2004, pp. 339–344.

[6] Y. Liu, K. Wu, and R. Karri, “Scan-based attacks on linear feedback shift
register based stream ciphers,” ACM Trans. Design Autom. Electron.
Syst., vol. 16, no. 2, pp. 1–15, 2011.

[7] R. Nara, K. Satoh, M. Yanagisawa, T. Ohtsuki, and N. Togawa,
“Scan-based side-channel attack against RSA cryptosystems using scan
signatures,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci.,
vol. 93, no. 12, pp. 2481–2489, 2010.

[8] J. Da Rolt, G. Di Natale, M.-L. Flottes, and B. Rouzeyre, “Are advanced
DfT structures sufficient for preventing scan-attacks?” in Proc. VLSI Test
Symp., 2012, pp. 246–251.

[9] O. Choudary, Breaking Smartcards Using Power Analysis, University of
Cambridge, Cambridge, U.K., 2005.

[10] V. Banciu, E. Oswald, and C. Whitnall, “Reliable information extraction
for single trace attacks,” in Proc. Design Autom. Test Europe, 2015,
pp. 133–138.

[11] D. Strobel, F. Bache, D. Oswald, F. Schellenberg, and C. Paar,
“SCANDALee: A side-channel-based disassembler using local elec-
tromagnetic emanations,” in Proc. Design Autom. Test Europe, 2015,
pp. 139–144.

[12] R. Kumar, P. Jovanovic, W. Burleson, and I. Polian, “Parametric Trojans
for fault-injection attacks on cryptographic hardware,” in Proc. Fault
Diagnosis Tolerance Cryptography, 2014, pp. 18–28.

[13] M. Tehranipoor and C. Wang, Introduction to Hardware Security and
Trust. New York, NY, USA: Springer, 2012.

[14] C. Maunder, “The joint test action group,” Comput.-Aided Eng. J., vol. 3,
no. 4, pp. 121–122, Aug. 1986.

[15] Oracle. OpenSPARC T2. Accessed: Oct. 1, 2013. [Online]. Available:
http://www.oracle.com/technetwork/systems/opensparc/

[16] B. Yang, K. Wu, and R. Karri, “Secure scan: A design-for-test archi-
tecture for crypto chips,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 25, no. 10, pp. 2287–2293, Oct. 2006.

[17] R. Nara, N. Togawa, M. Yanagisawa, and T. Ohtsuki, “Scan-based attack
against elliptic curve cryptosystems,” in Proc. Asia South Pac. Design
Autom. Conf., 2010, pp. 407–412.

[18] J. Da Rolt, A. Das, and G. Di Natale, “A new scan attack on RSA in
presence of industrial countermeasures,” in Proc. Defect Fault Tolerance
VLSI Nanotechnol. Syst., 2012, pp. 89–104.

[19] J. Da Rolt et al., “A scan-based attack on elliptic curve cryptosystems
in presence of industrial design-for-testability structures,” in Proc. VLSI
Nanotechnol. Syst., 2012, pp. 43–48.

[20] S. S. Ali, O. Sinanoglu, S. M. Saeed, and R. Karri, “New scan-based
attack using only the test mode,” in Proc. Int. Conf. Very Large Scale
Integr., 2013, pp. 234–239.

[21] F. Domke, “Blackbox JTAG reverse engineering,” in Proc. Chaos
Commun. Congr., 2009, pp. 1–5.

[22] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001.

[23] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn.,
vol. 20, no. 3, pp. 273–297, 1995.

[24] J. Da Rolt, G. Di Natale, M.-L. Flottes, and B. Rouzeyre, “Thwarting
scan-based attacks on secure-ICs with on-chip comparison,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 22, no. 4, pp. 947–951,
Apr. 2014.

Authorized licensed use limited to: Zhejiang Tmall Technology Co.Ltd.. Downloaded on July 31,2021 at 04:53:23 UTC from IEEE Xplore. Restrictions apply.

162 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 1, JANUARY 2019

[25] High Quality Test Solutions for Secure Applications, Mentor Graph.,
Wilsonville, OR, USA, 2010.

[26] A. Das, U. Kocabaş, A.-R. Sadeghi, and I. Verbauwhede, “PUF-based
Secure test wrapper design for cryptographic SoC testing,” in Proc.
Design Autom. Test Europe, 2012, pp. 866–869.

[27] S. Paul, “VIm-Scan: A low overhead scan design approach for protection
of secret key in scan-based secure chips,” in Proc. VLSI Test Symp.,
2007, pp. 455–460.

[28] F. Novak and A. Biasizzo, “Security extension for IEEE Std 1149.1,” J.
Electron. Test., vol. 22, no. 3, pp. 301–303, 2006.

[29] J. Dworak and A. Crouch, “Don’t forget to lock your SIB: Hiding
instruments using P16871,” in Proc. Int. Test Conf., 2013, pp. 1–10.

[30] Design Security in Nonvolatile Flash and Antifuse FPGAs, Actel, San
Jose, CA, USA, 2002.

[31] D. E. Denning, “An intrusion-detection model,” IEEE Trans. Softw. Eng.,
vol. SE-13, no. 2, pp. 222–232, Feb. 1987.

[32] K. Ilgun, R. A. Kemmerer, and P. A. Porras, “State transition analysis:
A rule-based intrusion detection approach,” IEEE Trans. Softw. Eng.,
vol. 21, no. 3, pp. 181–199, Mar. 1995.

[33] J. M. Estevez-Tapiador, P. Garcia-Teodoro, and J. E. Diaz-Verdejo,
“Stochastic protocol modeling for anomaly based network intrusion
detection,” in Proc. Int. Workshop Inf. Assurance, 2003, pp. 3–12.

[34] X. Ren, V. G. Tavares, and R. D. Blanton, “Detection of illegitimate
access to JTAG via statistical learning in chip,” in Proc. Design Autom.
Test Europe, 2015, pp. 109–114.

[35] X. Ren, R. D. Blanton, and V. G. Tavares, “A learning-based approach to
secure JTAG against unseen scan-based attacks,” in Proc. IEEE Comput.
Soc. Annu. Symp. VLSI, 2016, pp. 541–546.

[36] G.-M. Chiu and J. C.-M. Li, “A secure test wrapper design against inter-
nal and boundary scan attacks for embedded cores,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 20, no. 1, pp. 126–134, Jan. 2012.

[37] J. Lee, M. Tebranipoor, and J. Plusquellic, “A low-cost solution for
protecting IPs against scan-based side-channel attacks,” in Proc. 24th
IEEE VLSI Test Symp., 2006, pp. 94–99.

[38] J. Lee, M. Tehranipoor, C. Patel, and J. Plusquellic, “Securing designs
against scan-based side-channel attacks,” IEEE Trans. Depend. Secure
Comput., vol. 4, no. 4, pp. 325–336, Oct./Dec. 2007.

[39] D. Hely et al., “Scan design and secure chip [secure IC testing],” in
Proc. Int. On-Line Test. Symp., vol. 4, 2004, pp. 219–224.

[40] J. Lee, M. Tehranipoor, C. Patel, and J. Plusquellic, “Securing scan
design using lock and key technique,” in Proc. IEEE Defect Fault
Tolerance VLSI Syst., 2005, pp. 51–62.

[41] I. Slochinsky, “Introduction to embedded reverse engineering for PC
reversers,” in Proc. REcon Conf., 2010.

[42] C. Bishop, Pattern Recognition and Machine Learning. New York, NY,
USA: Springer, 2006.

[43] B. Schölkopf, R. C. Williamson, A. J. Smola, J. Shawe-Taylor, and
J. C. Platt, “Support vector method for novelty detection,” in Proc.
Neural Inf. Process. Syst., 1999, pp. 582–588.

[44] M. Bushnell and V. Agrawal, Essentials of Electronic Testing for
Digital, Memory and Mixed-Signal VLSI Circuits. New York, NY, USA:
Springer, 2000.

[45] ROC Curve. Accessed: Aug. 1, 2014. [Online]. Available:
http://www.mathworks.com/help/stats/perfcurve.html

[46] J. Biesiada and W. Duch, “Feature selection for high-dimensional data—
A Pearson redundancy based filter,” in Computer Recognition Systems 2.
Heidelberg, Germany: Springer, 2007, pp. 242–249.

[47] Classification Margin. Accessed: Mar. 1, 2015.
[Online]. Available: http://www.mathworks.com/help/stats/
compactclassificationdiscriminant.margin.html

[48] L. Breiman, “Out-of-bag estimation,” Citeseer, Rep., 1996.
[49] J. R. Struharik, “Implementing decision trees in hardware,” in Proc. Int.

Symp. Intell. Syst. Informat., 2011, pp. 41–46.
[50] AMBA AXI and ACE Protocol Specification, ARM, Cambridge, U.K.,

2011.
[51] Vivado Design Suite. Accessed: Mar. 1, 2015. [Online]. Available:

http://www.xilinx.com/products/design-tools/vivado.html
[52] A. Dushistova, Debugging With JTAG, MontaVista Softw. Inc., San Jose,

CA, USA, 2009.
[53] A. Sirotkin. (2010). Debugging the Linux Kernel With

JTAG. Accessed: Nov. 1, 2017. [Online]. Available: https://
www.embedded.com/design/operating-systems/4207333/Debugging-
the-Linux-kernel-with-JTAG

[54] J. Kaye, BL600 Firmware Upgrade Over JTAG, Laird Technol.,
Chesterfield, MO, USA, 2015.

[55] SIS3300/3301 JTAG Firmware Upgrade Instructions, Struck Innov.
Syst., Hamburg, Germany, 2005.

[56] Hewlett Packard Enterprise. HPE Digitally Signed Firmware.
Accessed: Dec. 1, 2017. [Online]. Available: https://hpe.
techdata.ch/fileadmin/user_upload/Infos/Produkt/SSD/HPE_Digitally_
Signed_Firmware_Disks.pdf

[57] AN0060: Bootloader With AES Encryption, Silicon Labs, Austin, TX,
USA, 2016.

[58] R. F. Buskey and B. B. Frosik, “Protected JTAG,” in Proc. Int. Conf.
Parallel Process. Workshops, 2006, p. 8.

[59] A. Das et al., “Secure JTAG implementation using Schnorr protocol,”
J. Electron. Test., vol. 29, no. 2, pp. 193–209, 2013.

[60] K.-Y. Park, S.-G. Yoo, and J.-H. Kim, “Debug port protection mecha-
nism for secure embedded devices,” J. Semicond. Technol. Sci., vol. 12,
no. 2, pp. 240–253, 2012.

Xuanle Ren (S’15) received the B.S. degree in
microelectronics from Peking University, Beijing,
China, in 2012. He is currently pursuing the Ph.D.
degree with the Electrical and Computer Engineering
Department, Carnegie Mellon University, Pittsburgh,
PA, USA, and the University of Porto, Porto,
Portugal, supported by the Carnegie Mellon Portugal
Program.

He is a member of the Advanced Chip Testing
Laboratory, Carnegie Mellon University and a
Researcher with INESC TEC, Porto, Portugal. His

current research interests include security of integrated system and network,
and machine learning in chip.

Francisco Pimentel Torres (S’10) received the B.S.
degree in electrical and computer engineering and
the M.S. degree in electrical and computer engineer-
ing (microelectronics and embedded systems) from
the University of Porto, Porto, Portugal, in 2013 and
2015, respectively.

He did research internships with the Technical
University of Munich, Munich, Germany, in 2013,
and Carnegie Mellon University, Pittsburgh, PA,
USA, in 2015. He is currently a Digital Design
Engineer with Qualcomm, Cambridge, U.K. His cur-

rent research interests include integrated circuit design and testing, machine
learning, and computer architecture.

R. D. (Shawn) Blanton (S’93–M’95–SM’03–F’09)
received the B.S. degree in engineering from Calvin
College, Grand Rapids, MI, USA, in 1987, the M.S.
degree in electrical engineering from the University
of Arizona, Tucson, AZ, USA, in 1989, and the
Ph.D. degree in computer science and engineering
from the University of Michigan, Ann Arbor, MI,
USA, in 1995.

He is currently a Professor of electrical and com-
puter engineering with Carnegie Mellon University,
Pittsburgh, PA, USA. He also serves as the Associate

Director of the SYSU-CMU Joint Institute Engineering, and as the Founder
and the Leader of the Advanced Chip Testing Laboratory. His current research
interest includes test and diagnosis of integrated heterogeneous systems.

Vítor Grade Tavares (M’03) received the
Licenciatura and M.S. degrees in electrical engi-
neering from the University of Aveiro, Aveiro,
Portugal, in 1991 and 1994, respectively, and
the Ph.D. degree in electrical engineering from
the Computational NeuroEngineering Laboratory,
University of Florida, Gainesville, FL, USA, in
2001.

In 1999, he joined the University of Porto, Porto,
Portugal, as an Invited Assistant, where he has been
an Assistant Professor since 2002. In 2010, he was

a Visiting Professor with Carnegie Mellon University, Pittsburgh, PA, USA.
He is also a Senior Researcher with the Instituto de Engenharia de Sistemas
e Computadores, Tecnologia e Ciência, Porto. His current research interests
include low-power, mixed-signal and neuromorphic integrated-chip design
and biomimetic computing, CMOS RF integrated circuit design for wireless
sensor networks, and transparent electronics.

Authorized licensed use limited to: Zhejiang Tmall Technology Co.Ltd.. Downloaded on July 31,2021 at 04:53:23 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

