
Customizing Trusted AI Accelerators for Efficient
Privacy-Preserving Machine Learning

Peichen Xie

Peking University

Xuanle Ren

Alibaba Group

Guangyu Sun

Peking University

ABSTRACT
The use of trusted hardware has become a promising solution

to enable privacy-preserving machine learning. In particular,

users can upload their private data and models to a hardware-

enforced trusted execution environment (e.g. an enclave in
Intel SGX-enabled CPUs) and run machine learning tasks in

it with confidentiality and integrity guaranteed. To improve

performance, AI accelerators have been widely employed for

modern machine learning tasks. However, how to protect

privacy on an AI accelerator remains an open question. To

address this question, we propose a solution for efficient

privacy-preserving machine learning based on an unmod-

ified trusted CPU and a customized trusted AI accelerator.

We carefully leverage cryptographic primitives to establish

trust and protect the channel between the CPU and the accel-

erator. As a case study, we demonstrate our solution based

on the open-source versatile tensor accelerator. The result

of evaluation shows that the proposed solution provides effi-

cient privacy-preserving machine learning at a small design

cost and moderate performance overhead.

1 INTRODUCTION
Privacy is a key issue in many machine learning applications

such as machine learning as a service, federated learning,

inference at the edge, etc. Generally, we formulate a machine

learning task by

result = 𝑓 (model, data)

where the model and the data can be provided by two or

more parties. The term privacy-preserving machine learning
is to evaluate 𝑓 (model, data) without disclosing their private
model/data.

To this end, numerous recent studies regard it as a se-

cure multi-party computation (MPC) problem and propose

cryptography-based solutions. For example, homomorphic

encryption, garbled circuits and secret sharing are lever-

aged for privacy-preserving inference [5, 10] and privacy-

preserving training [16, 19]. However, cryptography-based

solutions are very inefficient because of the intensive com-

putation and communication of homomorphic encryption

and MPC protocols. In addition, these solutions lack versa-

tility because the operations supported by homomorphic

encryption and MPC protocols are limited.

Alternatively, trusted execution environment (TEE) is a

promising approach to efficient privacy-preserving machine

learning. Lately, CPU designers have integrated trusted com-

puting components into CPUswhich enables hardware-based

trusted execution environments. Based on trusted CPUs (e.g.

Intel’s SGX-enabled CPUs), the model/data owners can up-

load their private model/data to a secure enclave via en-

crypted communication channels. The enclave is secured

such that only verified trusted software can access and de-

crypt the model and data. In the enclave, the CPU eval-

uates 𝑓 (model, data) over the decrypted model and data.

Therefore, compared with cryptography-based solutions,

such approaches are more versatile and can achieve privacy-

preserving machine learning with lower overhead [7, 18].

However, the computational power of CPUs is still insuffi-

cient for large-scaleMLmodels such as deep neural networks.

To improve performance, both academia and industry have

designed various dedicated AI accelerators such as Eyeriss[2],

TPUs[9], VTA[17], etc. Although AI accelerators can help

handle such workloads, employing AI accelerators as well

as protecting privacy remains an open question (Section

2.2). For example, Volos et al. [21] have proposed enabling

TEEs on GPUs, but this solution relies on the assumption

that recent server-class GPUs have trusted device memory

(e.g. on-package HBM). This assumption, however, is not

appropriate for many AI accelerators, which use off-package

untrusted memory. Jiang et al. [8] propose to customize the

CPU hardware to provide secure I/O paths to the GPU. How-

ever, it omits physical attacks (e.g. eavesdropping on the bus),

and modifying the architecture/behavior of modern CPUs

may also be difficult for most companies and institutions.

In contrast, in this paper, we propose a simple but effective

solution for efficient privacy-preserving machine learning by

customizing trusted AI accelerators without modifying the

CPU. Specifically, we customize the accelerator by adding

a security interface and a crypto engine to the AI accelera-

tor; the CPU, the core logic of the accelerator and the buses

remain unchanged. To ensure confidentiality and integrity,

we first leverage the newly-added cryptographic primitives

to establish trust and exchange a symmetric key between

the CPU enclave and the AI accelerator. Then, we carefully

protect all communication channels between the CPU en-

clave and the accelerator using this symmetric key. Since

the key is only held by the CPU enclave and the accelerator,

ar
X

iv
:2

01
1.

06
37

6v
1

 [
cs

.A
R

]
 1

2
N

ov
 2

02
0

Peichen Xie, Xuanle Ren, and Guangyu Sun

anyone without the key cannot obtain or tamper with the

code and data. As a result, we can offload the computation

to the accelerator securely, and leverage the accelerator to

evaluate 𝑓 (model, data) efficiently.

As a case study, we demonstrate the implementation of

our solution on an open-source AI accelerator (Section 4).

The result shows that our solution can utilize the high com-

putational power of the AI accelerator with major hard-

ware/software designs (such as the IP core design, the instruc-

tion set architecture and the compiler) unchanged. Therefore,

this solution is suitable for the scenarios where AI accelera-

tors are customizable but CPUs/GPUs are not.

In summary, the contributions of our paper are as follows:

• Wepropose the solution for efficient privacy-preserving

machine learning by customizing trusted AI accelera-

tors and extending TEEs to AI accelerators.

• We propose the methods to secure the code and data

used by the customized AI accelerator. Particularly, the

methods are effective even if the AI accelerator does

not have trusted device memory.

• We evaluate the implementation of our solution on

VTA (an open-source AI accelerator) as a case study,

and analyze the performance impactwith cycle-accurate

register-transfer-level simulation.

• We analyze the performance overhead of our solution

and present several ways to reduce the overhead.

2 BACKGROUND
2.1 Trusted Execution Environment
A trusted execution environment (TEE) guarantees code and

data in it are isolated and protected from the outside envi-

ronment, including unauthorized users, attackers, system

administrators and even the operating system and the hy-

pervisor. Various implementations of the TEE have been

proposed by industry and academia recently, e.g. Intel SGX

[3], ARM TrustZone [14], Keystone [12], based on their re-

spective CPUs. In this paper, we use Intel SGX as the CPU-

side TEE because it provides comprehensive protection and

it is industry-ready. In addition, because SGX has a mini-

mal trusted computing base (TCB) [4], our solution can be

adapted to other CPUs.

SGX-enabled CPUs can protect a specific memory region

(i.e. processor’s reserved memory) from all unauthorized

memory accesses and DMA accesses thanks to the integra-

tion of the uncore (including the memory controller and

the I/O controller). Besides, the SGX-enabled CPU has inte-

grated a memory encryption engine in order to protect this

memory region against physical attacks. Based on these secu-

rity features, Intel provides secure containers called enclaves
that hold private data and code in the processor’s reserved

memory.

For privacy-preserving machine learning, the typical solu-

tion based on SGX is to have different parties upload their

confidential data/model into an enclave over an encrypted

channel, attest the software running in the enclave and fi-

nally receive the encrypted result [7, 18]. However, using

trusted CPUs, the performance is restricted by the CPU per-

formance, which is not sufficient for modern machine learn-

ing tasks (e.g. training a deep neural network).

2.2 Extending TEEs to Accelerators
Recent studies have attempted several ways to leverage hard-

ware accelerators to improve performance while ensuring

data privacy and security. In this part, we will give a brief

introduction to them and explain why it is still challenging

to reach that goal.

Trusted I/O is a generic way to establish a trusted and

secure I/O path to a target I/O device. Regretfully, SGX lacks

support for generic trusted I/O; SGX does not support run-

ning privileged code in an enclave, either, which is important

for managing I/O devices. Although recent works [13, 22]

have proposed trusted path architectures for SGX, their meth-

ods compromise the security of SGX (e.g. they do not con-

sider physical attacks).

Compared with the I/O devices without device memory

(e.g. a keyboard), accelerators have a larger attack surface

because of their own code and data stored in memory. Thus,

it is difficult to use accelerators securely by just applying

generic trusted I/O. Instead, designing a trusted path to the

accelerator specifically is a more promising way.

HIX [8] is a hardware/software architecture to protect the

I/O path between user software and an unmodified commod-

ity GPU. To achieve this, HIX changes the CPU’s hardware

architecture in order to 1) provide a specific enclave for the

GPU driver and 2) protect MMIO accesses to the GPU. As

a result, it provides protection against privileged software.

However, HIX assumes the whole graphics card (including

the GPUmemory) and the whole hardware system (including

buses) are trusted. Therefore, the assumption suggests that

HIX cannot prevent physical attacks (such as eavesdropping

on the bus) yet.

Instead of customizing the CPU, Graviton [21] modifies

the GPU to support TEEs on GPUs. In particular, it manages

to provide secure “contexts” on the multi-kernel GPU by

customizing the GPU’s command processor and addresses

the problem of physical snooping attacks. The design is based

on the assumption that the GPU has on-packagememory (e.g.

HBM) which is within the trust boundary. This assumption is

appropriate for modern server-class GPUs. However, many

AI accelerators use off-package memory which is commonly

assumed to be untrusted, so the design of Graviton cannot

be directly adapted to AI accelerators.

Customizing Trusted AI Accelerators for Efficient Privacy-Preserving Machine Learning

Computing Platform

Data

Owner(s)

Model

Owner(s)

Trusted CPU

AI Accelerator

data model

code & data result

Encrypted channel

Trusted hardware

Figure 1: High-level overview of our solution for
privacy-preserving machine learning.

Slalom [20] provides a novel framework to outsource ma-

trix multiplication to an untrusted hardware accelerator, in

order to accelerate deep neural network (DNN) inference,

based on existing trusted CPUs. To ensure privacy and in-

tegrity, it leverages two cryptographic schemes, i.e. additive

stream cipher and Freivalds’ algorithm. However, Slalom has

the following limitations: 1) It omits the model privacy with

respect to the server. 2) As the authors acknowledge, apply-

ing Slalom to DNN training is hard because of the limitation

of algorithm. 3) In terms of performance, Slalom requires a

pre-processing phase but regretfully, the paper has reported

neither the run time of it nor the end-to-end latency.

Ideally, we wish to leverage the AI accelerator for versa-

tile machine learning tasks (including training) efficiently

while ensuring strong security. Among the above solutions,

Graviton is the closest to this goal. Inspired by Graviton,

we will customize AI accelerators in order to extend TEEs

to the accelerator for efficient privacy-preserving machine

learning.

3 METHODOLOGY
In this section, wewill detail the proposed solution for privacy-

preserving machine learning, where there are data owners,

model owners and a computing platform. In this scenario,

the data/model owner wishes to use the computing platform

(which can be a third party or one of the data owners or the

model owners) to accomplish a machine learning task with-

out disclosing their data/model. To achieve this efficiently,

our solution leverages the trusted CPU and the customized

AI accelerator inside the computing platform. After the data

owners and the model owners send their data/model into the

CPU enclave through encrypted channels, the computation

is offloaded to the accelerator securely.

The whole procedure is depicted in Figure 1. In the follow-

ing part, we will define our threat model first, describe the

procedure of trust establishment and our protection method,

and then analyze the performance overhead of our solution.

3.1 Threat Model
We consider the computing platform can be compromised by

an adversary, who can control the entire software/hardware

system.

For hardware, only 1) the CPU package and 2) the accel-

erator package are trusted. They are considered the only

secure regions of the computing platform. All the other hard-

ware, including memory, storage, peripheral devices, may be

compromised. We consider the adversary can

• eavesdrop on the system bus and the PCIe bus

• directly access themainmemory via amalicious device

• make man-in-the-middle attacks between the CPU and

the accelerator

• eavesdrop on, tamper with or directly access the de-

vice memory of the accelerator if the AI accelerator

has untrusted device memory (e.g. off-package device

memory)

For software, everything except the program running in

the enclave is untrusted. Malicious software is able to com-

promise the operating system or the hypervisor to run at the

highest privilege level, so the adversary can

• directly access any part of the main memory except

the PRM (processor’s reserved memory) region

• access and send commands to the accelerator viaMMIO

• compromise the driver and then invoke or tamper with

driver APIs if the driver is not running in the enclave
1

The adversary wishes to steal the data/model on the com-

puting platform. The goal of our solution is to prevent the

adversary from this and ensure the integrity of code and data.

The size of the data/model, the run time and the memory ac-

cess pattern are not considered sensitive in this paper. Since

the unmodified trusted CPU is included in our solution, this

work will not prevent existing vulnerabilities of the trusted

CPU, so side-channel attacks and denial-of-service attacks

are out of our scope.

3.2 Trust
To establish trust between two parties, there are existing

methods in the practice of trusted computing (such as TPM

and Intel SGX). In our solution, we adopt these methods

(generally known as remote attestation [4]) to establish trust

between the data owner (or the model owner) and the CPU

enclave. As a result, both the data and model owners can

trust 1) the enclave is a genuine secure environment provided

by the trusted CPU, 2) the attested software is correctly

running in this enclave and 3) their data and model have

been uploaded to the enclave securely and integrally.

1
E.g. Intel SGX does not support kernel-mode enclaves.

Peichen Xie, Xuanle Ren, and Guangyu Sun

Host Program AI AcceleratorCA

① 𝐴𝐾𝑝𝑢𝑏, 𝑠1

② 𝐴𝐾𝑝𝑢𝑏, 𝑠1

③ certificate

④ 𝑝 , 𝑔, 𝑔𝐴mod 𝑝, 𝑠 2

⑤ Enc 𝑔𝐵mod 𝑝

Figure 2: Trust establishment between the host pro-
gram and the AI accelerator.

Next, to extend the trusted boundary from the CPU en-

clave to the AI accelerator, we borrow the concept of remote

attestation and detail our method depicted in Figure 2.

3.2.1 Authentication. The first step is authentication, where
the AI accelerator proves itself to the trusted software run-

ning in the CPU enclave (denoted by the “host program” in

the following part) that it is a genuine trusted accelerator.

The process of authentication is based on public-key cryp-

tography. Specifically, each trusted accelerator is assigned

with a unique pair of endorsement keys (𝐸𝐾𝑝𝑟𝑖 , 𝐸𝐾𝑝𝑢𝑏) when
it is manufactured. The private key 𝐸𝐾𝑝𝑟𝑖 is burned to the

accelerator hardware and it should be only known by the

accelerator. The public key 𝐸𝐾𝑝𝑢𝑏 is maintained by the man-

ufacturer’s certificate authority (CA). Then, each time the

host program wants to use the accelerator, the accelerator

generates a different pair of attestation keys (𝐴𝐾𝑝𝑟𝑖 , 𝐴𝐾𝑝𝑢𝑏),
and then sends the public key 𝐴𝐾𝑝𝑢𝑏 and an 𝐸𝐾𝑝𝑟𝑖-signed

signature 𝑠1 = Sign(𝐸𝐾𝑝𝑟𝑖 , 𝐴𝐾𝑝𝑢𝑏) to the host program.

The host program should verify whether 𝐴𝐾𝑝𝑢𝑏 is bound

to a genuine trusted accelerator. For this purpose, it sends the

received𝐴𝐾𝑝𝑢𝑏 and 𝑠1 to themanufacturer’s CA, and then the

CA uses 𝐸𝐾𝑝𝑢𝑏 to verify the signature. If 𝑠1 matches 𝐴𝐾𝑝𝑢𝑏 ,

the CA issues a certificate and returns it to the host program.

Once the host program receives the certificate, it can confirm

that 𝐴𝐾𝑝𝑢𝑏 is generated by the trusted accelerator.

3.2.2 Key exchange. The second step is key exchange, the

purpose of which is to establish a shared symmetric key

between the AI accelerator and the host program. Based

on the trust established in the first step, we use AK as the

signing key for ephemeral Diffie-Hellman key exchange.

Specifically, the accelerator generates a prime number 𝑝 ,

a primitive root 𝑔 and a random number 𝐴, and then trans-

mits 𝑝 , 𝑔, 𝑔𝐴 mod 𝑝 and an 𝐴𝐾𝑝𝑟𝑖-signed signature 𝑠2 =

Sign(𝐴𝐾𝑝𝑟𝑖 , 𝑝 | |𝑔| |𝑔𝐴 mod 𝑝) to the host program. After the

host program receives them and verifies the signature with

𝐴𝐾𝑝𝑢𝑏 , it generates a random number 𝐵 and then sends

Encrypt(𝐴𝐾𝑝𝑢𝑏, 𝑔
𝐵
mod 𝑝) to the accelerator. In the end, both

the host program and the accelerator can calculate 𝑔𝐴𝐵 mod

𝑝 as their shared secret and can derive a symmetric key 𝐾

from the shared secret by a key derivation function.

3.3 Protection
On the basis of the shared symmetric key, we propose the

following data protection methods to prevent the adversary

from obtaining the data/model when the host program of-

floads the computation to the AI accelerator.

3.3.1 Overview. First, we protect the code and data trans-

mitted between the host program and the accelerator. Gen-

erally, the code and data are placed from the host program’s

memory space to the “off-chip DRAM”, which denotes the

memory that is not part of the CPU nor the accelerator pack-

age. Then, the accelerator fetches the code from the off-chip

DRAM and accesses the off-chip DRAM to get/put run-time

data. Considering the adversary can read and write the off-

chip DRAM device memory and the buses can be comprised,

we should not disclose the code and data in such insecure

regions. Formally, we define:

Rule 1. The code and data should be encrypted and integrity-
protected during the transmission between the host program
and the off-chip DRAM.

Rule 2. The code and data should keep encrypted and integrity-
protected in the off-chip DRAM.

Based on these rules, we employ authenticated encryp-

tion, which is a combination of encryption and message

authentication, to ensure both confidentiality and integrity

of the transmitted messages. In particular, the host program

encrypts the code and data in the CPU enclave with the sym-

metric key 𝐾 , calculates the message authentication code

(MAC) of them with 𝐾 and then writes the ciphertext and

the MAC to the off-chip DRAM
2
. To use the code and data,

the accelerator decrypts them and verifies their integrity

with the MAC. Symmetrically, after calculating the result,

the accelerator encrypts the result and calculates its MAC,

and then writes the ciphertext and the MAC to the off-chip

DRAM. The host program can get the result after decryption

and verification.

3.3.2 Detail. However, to achieve efficiency as well as secu-

rity, some issues need to be carefully considered:

• Where is the decrypted code and data placed?

• How to protect run-time data stored in the off-chip

DRAM?

If the AI accelerator has its own trusted on-package device

memory, the answer is simple: It can just put the decrypted

code and data in the trusted devicememory and directly store

the run-time data without encryption or integrity protection.

If not, the accelerator can never put unencrypted messages

in the off-chip DRAM according to Rule 2. It is also impracti-

cal to store them in the accelerator’s limited on-chip storage.

2
The MAC can be also written to the accelerator’s register.

Customizing Trusted AI Accelerators for Efficient Privacy-Preserving Machine Learning

Host Program AI Accelerator

Off-chip DRAM

①

②

④

⑤

Driver

AE() = Authenticated Encryption

①AE(code & data)

②Modified registers, nonce and MAC

③Modified registers, nonce and MAC

④AE(code, data & run-time data)

⑤AE(result)

⑥AE(result)

⑥

③

Figure 3: Methods for protecting code, data and programmer-visible registers transmitted between the host pro-
gram and the AI accelerator.

Therefore, the accelerator must decrypt the code and data

“on demand”. In particular, each time the accelerator fetches

a piece of code or data from the off-chip DRAM to the accel-

erator’s on-chip storage (e.g. SRAM buffers or registers), it

fetches the corresponding piece of ciphertext and decrypts it

inside the accelerator. To achieve this efficiently, we require a

counter mode–based authenticated encryption scheme such

as AES-GCM and AES-CCM. Taking AES-GCM for example,

after the accelerator fetches the piece of ciphertext, the ci-

phertext is XORed with 𝐴𝐸𝑆 (𝑐𝑜𝑢𝑛𝑡𝑒𝑟) inside the accelerator
to get the plaintext. This procedure avoids data dependency

and thus it is friendly to hardware implementation.

Integrity is another challenge because the adversary can

modify the code and data in the untrusted off-chip DRAM at

run time. Thus, the accelerator needs to verify integrity each

time it accesses the off-chip DRAM. However, it is extremely

inefficient to repeatedly verify whether the whole code and

data match the MAC. To tackle this problem, we propose the

following scheme:

• Before the host program applies authenticated encryp-

tion to the code and data, it divides the whole code

and data into𝑚 pieces, and the size of each piece does

not exceed 𝑠 .

• Then the host program calculates their respective ci-

phertext and MAC and then stores these𝑚 pieces of

ciphertext and MAC in the off-chip DRAM.

• In this case, each time the accelerator accesses the off-

chip DRAM, it only fetches corresponding pieces and

verifies whether they match their MAC.

A smaller 𝑠 means a finer granularity and causes a lower

latency of the cryptographical computation. However, it also

means a larger𝑚 and leads to a larger memory consumption

(for the𝑚 pieces of MAC) as well as an increase in the accel-

erator’s DRAM access. As a result, the value of𝑚 should be

the trade-off between computation and memory access.

The run-time data should also be protected when the AI

accelerator has no trusted device memory. Specifically, ac-

cording to Rule 2, the run-time data should be encrypted

by counter-mode encryption before they are written to the

off-chip DRAM, and their integrity should be protected by

the method described in the previous paragraph.

3.3.3 Register state. So far we have completed the protection

of the code and data in the off-chip DRAM to ensure that the

adversary cannot learn or tamper with them. However, the

information that is stored in theAI accelerator’s programmer-

visible registers (e.g. address registers and control registers)

has not been protected. Specifically, if the host program

wishes to use the AI accelerator, it invokes the accelerator’s

driver to write the accelerator’s registers through MMIO. In

our threat model, the adversary is able to directly access the

registers through MMIO. Thus, we have the following rule:

Rule 3. The integrity and freshness of the programmer-
visible registers of the AI accelerator should be guaranteed
during the transmission between the host program and the
accelerator.

Based on this rule, we propose to use message authentica-

tion code (MAC) to prevent the adversary from tampering

with the registers and use nonces to prevent replay attacks.

Note that the kernel-mode driver may not be running in

the CPU enclave, so we let the runtime (also known as the

user-mode driver) in the enclave to maintain the register

state. Each time the host program modifies a register, it also

calculates the MAC of the whole register state and the nonce

with the symmetric key 𝐾 . After the host program writes the

modified registers, it writes the MAC (as well as the nonce) to

a specific register of the accelerator. All the writes are done

by invoking the kernel-mode driver. Since only the host pro-

gram and the accelerator know 𝐾 , the accelerator can verify

the integrity of the register state and the driver cannot coun-

terfeit the MAC. Therefore, this problem is solved even if

the driver is not within the trust boundary (i.e. the driver

is untrusted). To sum up, Figure 3 depicts our protection

methods.

Peichen Xie, Xuanle Ren, and Guangyu Sun

VTA
Core

MMIO
Interface

DMA
Interface

RSATRNG

AES-256

Host CPU

DRAM

Key Storage

Secured VTA KDF GFM

Crypto Engine

Security Interface

BufferControl
Logic

Figure 4: We customize the VTA by adding a security
interface and a crypto engine.

3.4 Overhead
Analytically, the total run time of a machine learning task

is composed of computation and memory access. Compared

with conventional AI accelerators, our methods do not affect

the computation (e.g. matrix multiplications). In contrast,

our protection methods additionally introduce encryption,

decryption, and message authentication, all of which are

bound to memory access. Each time the trusted accelerator

fetches a piece of code/data from the off-chip DRAM, the

accelerator has to decrypt it and verify its MAC before using

it. Each time the trusted accelerator aims to write a piece of

data to the off-chip DRAM, the accelerator has to encrypt

it and calculate its MAC. As a result, the slowdown will

be significant if the workload involves a large amount of

memory access. On the contrary, a small amount of memory

access will lead to slight slowdowns. Therefore, the extent

of the performance overhead depends on the memory access

intensity of the workload.

4 CASE STUDY: VTA
In this section, we demonstrate the process of customizing a

trusted AI accelerator using the proposed methods. In par-

ticular, we implement the customization on the open-source

versatile tensor accelerator (VTA) [17] and evaluate its im-

pact on the performance of the VTA.

4.1 Architecture
Referring to Figure 1, we deploy a trusted CPU and a cus-

tomized VTA in the computing platform, and we have the

model/data owners upload their private model and data to a

CPU enclave securely. Then, the host program (a trusted and

attested piece of software running in the enclave) compiles

the model into VTA code just in time with the TVM deep

learning compilation stack [1], and then offloads the code

and data to the VTA and waits until the result is calculated

following the proposed protection methods. To implement

support for the protection methods as well as the trust estab-

lishment methods on the VTA, both hardware and software

of the VTA are modified.

In terms of hardware, we do not change the design of the

VTA core
3
. Instead, a security layer, including a security inter-

face and a crypto engine, is added between the VTA core and

the host CPU/DRAM (Figure 4) to handle the cryptographic

functionalities. The security interface buffers the received

data in an on-chip buffer (2 KB), communicates the data to

the crypto engine, and then sends the encrypted/decrypted

data to the DRAM/VTA. The crypto engine contains com-

ponents (such as AES, RSA, and TRNG) that are used for

authenticated encryption and trust establishment. In this ex-

periment, we implement the AES-256 module that employs

a pipelined structure in which encryption/decryption of a

128-bit plaintext/ciphertext takes 29 clock cycles
4
, and the

GFM (Galois-Field Multiplication) module that incurs 8 clock

cycles for the authentication of each 128-bit text
5
.

The modification of software only involves the VTA run-

time, while the instruction set architecture of VTA or the

just-in-time compiler does not need to change in our solution.

The VTA runtime (vta/src/runtime.cc) is part of the host
program which acts as an interface to the untrusted off-chip

DRAM and the kernel-mode driver. Specifically, the original

VTA runtime is responsible for allocating a few buffers in

the off-chip DRAM, putting the code (namely “kernel” in

VTA) and data into corresponding buffers, and invoking the

driver to launch the kernel. In our solution, the runtime is

modified such that it can 1) apply authenticated encryption

to the code and data, and 2) maintain the register state to cal-

culate MAC of the registers and nonces. The memory layout

remains the same because counter-mode encryption does

not change the size of messages, but authenticated encryp-

tion results in extra metadata (i.e., nonces and GMAC) in

addition to the original message. The metadata is stored in a

newly-allocated buffer in the off-chip DRAM.

4.2 Evaluation
We build a cycle-accurate simulation environment based

on VTA’s TSIM
6
, which can compile the register-transfer-

level design into libvta_hw.so and integrate this simulation

library into the TVM stack to evaluate run time in clock

cycles.

Since the VTA is mainly designed for computer-vision

tasks [17], we first test the computation of 2D convolution

layers and fully connected layers, which represent the dom-

inant operators in most computer vision deep neural net-

works. Specifically, we use two convolutional layers and two

fully connected layers of AlexNet [11], which have similar

amount of computation, as our benchmarks: Conv4 (384

3
https://github.com/apache/incubator-tvm/tree/v0.6/vta

4
https://opencores.org/projects/tiny_aes

5
https://opencores.org/projects/gcm-aes

6
https://github.com/apache/incubator-tvm/tree/v0.6/vta/apps/tsim_example

Customizing Trusted AI Accelerators for Efficient Privacy-Preserving Machine Learning

Table 1: Latency in clock cycles (and slowdowns com-
pared with the original VTA).

VTA VTA-trusted VTA-ctr

Conv4 2 782 962 2 988 247 (1.074×) 2 872 727 (1.032×)
Conv5 1 879 117 2 083 659 (1.109×) 1 969 399 (1.048×)
FC1 5 418 983 29 300 635 (5.407×) 6 016 817 (1.110×)
FC2 2 412 609 13 034 043 (5.402×) 2 682 866 (1.112×)

ResNet-18 29 964 469 32 338 145 (1.079×) 30 238 890 (1.009×)

input channels, 256 output channels), Conv5 (256 input chan-

nels, 256 output channels), FC1 (9216 inputs, 4096 outputs)

and FC2 (4096 inputs, 4096 outputs). For each benchmark, the

run time of three configurations are evaluated: 1) the original

VTA without any protection (denoted by VTA), 2) the VTA

with full protection (including confidentiality, integrity and

freshness, denoted by VTA-trusted), and 3) the VTA with the

protection of only confidentiality (implemented by AES-CTR,

denoted by VTA-ctr), which is used for profiling.

The experimental result is shown in Table 1. Compared

with the original VTA, VTA-trusted results in 1.074×–1.109×
slowdowns for convolutional layers but results in 5.402×–
5.407× slowdowns with respect to fully connected layers. It

is noticed that the slowdowns with respect to different types

of layers vary significantly. We will explain this as follows.

There are two main factors that lead to the significant

overhead of computing fully connected layers. The first one is

memory access intensity. As we discussed in Section 3.4, the

extent of the performance overhead depends on the memory

access intensity of the workload. For a fully connected layer

(with only 1 batch), the dominant operator is vector-matrix

multiplication. However, the memory access intensity of the

vector-matrix multiplication is about 1 word/FLOP, which is

notably higher than 2D convolution (approximately
1

𝐻𝑜×𝑊𝑜

word/FLOP).

The second factor stems from the implementation of the

GFM module which is used for calculating GMAC. Specif-

ically, we tested a configuration without the GFM module

(i.e. VTA-ctr) for profiling. As the result shows, removing

the GFM module results in a much better performance for

fully connected layers comparedwith VTA-trusted. The slow-

downs against the original VTA are reduced from 5.402×–
5.407× to 1.110×–1.112×. We notice that the implementation

of the AES module is pipelined and counter-mode encryp-

tion avoids data dependency, so it is feasible to achieve high

throughput. As a result, VTA-ctr only incurs 1.032×–1.112×
slowdowns. However, our implementation of the GFM mod-

ule is not pipelined and the calculation of GMAC has strong

data dependency. Thus, authenticating a piece of data of 𝑠

bits needs ⌈ 𝑠
128

⌉ × 8 clock cycles in our implementation.

4.3 Potential Improvement
Based on the observations above, we propose several po-

tential ways to improve the trusted VTA in order to reduce

slowdowns.

• To reduce the memory access intensity, we can opti-

mize the machine learning model at algorithm level,

such as reducing/avoiding fully connected layers, in-

creasing the batch size, using sparse neural networks,

etc.

• To reduce the memory access intensity, we may also

optimize the computation at the compiler level. For

example, recent deep learning compilers are exploiting

dedicated optimization to achieve efficient model-to-

hardware mapping (e.g. TVM).

• To reduce the overhead of message authentication, op-

timizing hardware implementation of the authentica-

tion module (e.g. designing a low-latency GFMmodule

[15]) is a straightforward way.

• To reduce the overhead of message authentication, us-

ing other authentication schemes may be a potential

direction. For example, the Merkle tree can reduce the

computation complexity of authenticating 𝑠-bit data

from 𝑂 (𝑠) to 𝑂 (log 𝑠) because of its potential for par-
allelism. Theoretically, the best effect (i.e. upperbound)

that this method can achieve is the result of VTA-ctr,

which has been shown in Table 1.

Fortunately, the current version of TVM (v0.6) has sup-

ported end-to-end compilation for ResNet-18 [6] on VTA

with compilation optimization (support for other models is

still under development). Thus, we take ResNet-18 as an ad-

ditional benchmark, whose result is shown in Table 1. As

we can see, the slowdown of VTA-trusted is satisfactorily

small (1.079×), which is attributed to the low memory ac-

cess intensity after compilation optimization. In addition,

the slowdown of VTA-ctr (1.009×) indicates a large space for
accelerating message authentication.

5 CONCLUSION
This paper proposes an efficient solution for privacy-preserving

machine learning with AI accelerators. The key innovation

lies in incorporating a customized AI accelerator into the

computing platform and ensuring its security. With the help

of the proposed methods, the users can upload their private

model and data to the computing platform securely and cal-

culates the result efficiently within the AI accelerator. The

case study shows this solution is effective on the versatile

tensor accelerator at a small design cost and moderate per-

formance overhead, and it is promising to use this solution

in the industry with lower overhead.

Peichen Xie, Xuanle Ren, and Guangyu Sun

REFERENCES
[1] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Q.

Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis

Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. TVM: An

Automated End-to-End Optimizing Compiler for Deep Learning. In

USENIX Symposium on Operating Systems Design and Implementation
(OSDI). 578–594.

[2] Yu-Hsin Chen, Joel S. Emer, and Vivienne Sze. 2016. Eyeriss: A Spatial

Architecture for Energy-Efficient Dataflow for Convolutional Neural

Networks. In International Symposium on Computer Architecture (ISCA).
367–379.

[3] Intel Corporation. 2016. Intel® 64 and IA-32 Architectures Software
Developer Manuals.

[4] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR
Cryptology ePrint Archive 2016 (2016), 86.

[5] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin E. Lauter,

Michael Naehrig, and John Wernsing. 2016. CryptoNets: Applying

Neural Networks to Encrypted Data with High Throughput and Accu-

racy. In International Conference on Machine Learning (ICML), Vol. 48.
201–210.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep

Residual Learning for Image Recognition. In Conference on Computer
Vision and Pattern Recognition (CVPR). 770–778.

[7] Tyler Hunt, Congzheng Song, Reza Shokri, Vitaly Shmatikov, and

Emmett Witchel. 2018. Chiron: Privacy-Preserving Machine Learning

as a Service. CoRR abs/1803.05961 (2018).

[8] Insu Jang, Adrian Tang, Taehoon Kim, Simha Sethumadhavan, and

Jaehyuk Huh. 2019. Heterogeneous Isolated Execution for Commodity

GPUs. In International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS). 455–468.

[9] Norman P. Jouppi, Cliff Young, Nishant Patil, David A. Patterson,

Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan

Boden, Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao,

Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben

Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gul-

land, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert

Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexan-

der Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen

Kumar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris

Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adri-

ana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi

Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omer-

nick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross,

Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew

Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gre-

gory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan,

Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. 2017.

In-Datacenter Performance Analysis of a Tensor Processing Unit. In

International Symposium on Computer Architecture (ISCA). 1–12.
[10] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan.

2018. GAZELLE: A Low Latency Framework for Secure Neural Net-

work Inference. In USENIX Security Symposium. 1651–1669.

[11] Alex Krizhevsky. 2014. OneWeird Trick for Parallelizing Convolutional

Neural Networks. CoRR abs/1404.5997 (2014).

[12] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanovic, and

Dawn Song. 2020. Keystone: An Open Framework for Architecting

Trusted Execution Environments. In European Conference on Computer
Systems (EuroSys).

[13] Hongliang Liang, Mingyu Li, Yixiu Chen, Lin Jiang, Zhuosi Xie, and

Tianqi Yang. 2020. Establishing Trusted I/O Paths for SGX Client

Systems With Aurora. IEEE Transactions on Information Forensics and

Security 15 (2020), 1589–1600.

[14] Arm Limited. 2009. ARM Security Technology Building a Secure System
using TrustZone Technology.

[15] Yang Lu, Guochu Shou, Yihong Hu, and Zhigang Guo. 2009. The Re-

search and Efficient FPGA Implementation of Ghash Core for GMAC.

In International Conference on E-Business and Information System Secu-
rity (EBISS). 1–5.

[16] Payman Mohassel and Yupeng Zhang. 2017. SecureML: A System for

Scalable Privacy-Preserving Machine Learning. In IEEE Symposium on
Security and Privacy (S&P). 19–38.

[17] Thierry Moreau, Tianqi Chen, Luis Vega, Jared Roesch, Eddie Q. Yan,

Lianmin Zheng, Josh Fromm, Ziheng Jiang, Luis Ceze, Carlos Guestrin,

and Arvind Krishnamurthy. 2019. A Hardware-Software Blueprint for

Flexible Deep Learning Specialization. IEEE Micro 39, 5 (2019), 8–16.
[18] Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha Mehta, Se-

bastian Nowozin, Kapil Vaswani, and Manuel Costa. 2016. Oblivious

Multi-Party Machine Learning on Trusted Processors. In USENIX Se-
curity Symposium. 619–636.

[19] Bita Darvish Rouhani, M. Sadegh Riazi, and Farinaz Koushanfar. 2018.

Deepsecure: Scalable Provably-Secure Deep Learning. In Design Au-
tomation Conference (DAC). 2:1–2:6.

[20] Florian Tramèr and Dan Boneh. 2019. Slalom: Fast, Verifiable and

Private Execution of Neural Networks in Trusted Hardware. In Inter-
national Conference on Learning Representations (ICLR).

[21] Stavros Volos, Kapil Vaswani, and Rodrigo Bruno. 2018. Graviton:

Trusted Execution Environments on GPUs. In USENIX Symposium on
Operating Systems Design and Implementation (OSDI). 681–696.

[22] Samuel Weiser and Mario Werner. 2017. SGXIO: Generic Trusted I/O

Path for Intel SGX. In Conference on Data and Application Security and
Privacy (CODASPY). 261–268.

	Abstract
	1 Introduction
	2 Background
	2.1 Trusted Execution Environment
	2.2 Extending TEEs to Accelerators

	3 Methodology
	3.1 Threat Model
	3.2 Trust
	3.3 Protection
	3.4 Overhead

	4 Case Study: VTA
	4.1 Architecture
	4.2 Evaluation
	4.3 Potential Improvement

	5 Conclusion
	References

