
Improving Accuracy of On-chip Diagnosis via

Incremental Learning

Xuanle Ren, Mitchell Martin and R. D. (Shawn) Blanton

Department of Electrical and Computer Engineering, Carnegie Mellon University

5000 Forbes Ave, Pittsburgh, PA, USA

{xuanler, mitchel1, blanton}@ece.cmu.edu

Abstract—On-chip test/diagnosis is proposed to be an effective
method to ensure the lifetime reliability of integrated systems.
In order to manage the complexity of such an approach, an
integrated system is partitioned into multiple modules where
each module can be periodically tested, diagnosed and repaired
if necessary. The limitation of on-chip memory and computing
capability, coupled with the inherent uncertainty in diagnosis,
causes the occurrence of misdiagnoses. To address this challenge,
a novel incremental-learning algorithm, namely dynamic k-
nearest-neighbor (DKNN), is developed to improve the accuracy
of on-chip diagnosis. Different from the conventional KNN,
DKNN employs online diagnosis data to update the learned clas-
sifier so that the classifier can keep evolving as new diagnosis data
becomes available. Incorporating online diagnosis data enables
tracking of the fault distribution and thus improves diagnostic
accuracy. Experiments using various benchmark circuits (e.g.,
the cache controller from the OpenSPARC T2 processor design)
demonstrate that diagnostic accuracy can be more than doubled.

Key words—On-chip diagnosis, k-nearest-neighbor, machine
learning, diagnostic accuracy, lifetime reliability

I. INTRODUCTION

Ensuring the lifetime reliability of integrated systems has

become a central concern. A robust system should be able

to continue acceptable operations over its intended lifetime

even in the presence of failures [1]. Although manufacturing

tests are performed to help ensure reliability, a chip may still

degrade and even fail in the field due to various locations of

failure. Early-life failure, also called infant mortality, is caused

by the defects that are not exposed during manufacturing

tests. However, electrical and thermal stress during in-field use

will eventually degrade the defect to a significant failure in

functionality [2], [3]. Wear-out, also called aging, manifesting

as progressive performance degradation, is induced by various

mechanisms, e.g., negative-bias temperature instability (NBTI)

and hot-carrier injection (HCI) [4].

Various methods have been proposed to detect and avoid

failures. First, forward error control (FEC) method uses error

correction codes (ECC) to detect and correct data faults during

transmission by adding data redundancy to the packets [5]–[8].

However, FEC does not target permanent failures, e.g, early-

life and wear-out [9]. On the other hand, most error detec-

tion/correction methods incur significant power, performance

and area penalties [10]. Second, failure-prediction schemes

provide an early warning of circuit aging before errors appear.

Specifically, an aging sensor periodically checks the slack

of a critical path in order to avoid the occurrence of delay

faults. This approach requires an aging sensor and a stability

checker for each flip-flop which however incurs a large area

overhead [11]. Third, on-chip self-test schemes test the system

periodically for failure detection [10], [12]–[14]. To reduce the

overhead, the DFT already on chip for manufacturing test is

reused to perform the in-field testing based on vectors stored

in off-chip flash memory.

To enable failure localization, diagnosis is performed when

on-chip self-test detects a failure. There are generally two

diagnostic approaches, namely, effect-cause and cause-effect

[15]. In effect-cause, a complete model of the design, its test-

vector set, and the test response from the failing circuit are

analyzed by diagnostic software to identify possible fault lo-

cations. However, it requires both significant memory and run-

time. Compared to effect-cause, cause-effect is more feasible.

However, it too has challenges since it requires the generation,

storage and usage of a fault dictionary that contains the test

response for every fault of interest. The size of a full fault

dictionary is measured in terabytes for modern designs [15]. In

[14], an on-chip diagnosis scheme that performs diagnosis and

repair however at the module level (i.e., sub-core/sub-uncore)

results in a much more compact dictionary. Instead of storing

the simulation response of each fault per test, the compact

fault dictionary only stores a single bit per test that indicates

the pass/fail status of a subset of faults that enable module-

level diagnosis. Such an approach significantly reduces the size

of a fault dictionary at the cost of diagnostic resolution (i.e.,

one module is assumed to be faulty, but multiple modules

are diagnosed as fault candidates). After the faulty module

is located, self-repair is performed to replace or bypass it

[16]. However, if the diagnostic resolution is non-ideal and

no further analysis is done to narrow down the fault location,

all fault candidates have to be repaired, resulting in inefficient

use of on-chip resources.

In this paper, a novel incremental-learning algorithm that we

call dynamic k-nearest-neighbor (DKNN) is proposed to im-

prove the accuracy of on-chip, module-level diagnosis. Here,

accuracy is defined as the probability that the identified module

is the one with the failure, assuming that a single module is

faulty. It is assumed that on-chip testing is performed with

a test clock that has a higher frequency than the system

clock because it allows failure sources that slowly degrade

system timing to be tracked over time. For example, delay

2015 IEEE 33rd VLSI Test Symposium (VTS) 

!

978-1-4799-7597-6/15/$31.00 ©2015 IEEE 

!

Authorized licensed use limited to: Zhejiang Tmall Technology Co.Ltd.. Downloaded on July 31,2021 at 04:40:49 UTC from IEEE Xplore.  Restrictions apply. 



degradation due to NBTI [4] can be monitored, enabling

system adjustments (e.g., task scheduling, sleep scheduling,

etc.) that mitigate adverse effects on system lifetime. Another

consequence of using a faster clock for test, means failures

will be much more frequent, thus creating sufficient data for

learning a model for improving diagnostic accuracy. Different

from the conventional KNN, DKNN employs online data to

update the learned classifier, enabling the classifier to evolve

as new data becomes available. Consequently, DKNN is able

to track the fault distribution, especially when the fault dis-

tribution is non-stationary1. In [17]–[19], pattern recognition

methods are used to make diagnostic decisions in analog

circuits. In particular, possible circuit defects are identified

through inductive fault analysis. Then a set of classifiers,

trained offline using data from fault simulation, is used to map

each defect to a score according to its likelihood of occurrence.

In [20], an incremental KNN algorithm that also revises the

composition of data set by exploiting a “correct-error” teacher

is proposed. In their approach, each instance in the data set is

associated with a dynamically-evolving weight, that requires

additional overhead if implemented on chip. Moreover, the

memory required increases as more data is collected, making it

difficult to determine the required amount of memory a priori.

Compared to the incremental KNN in [20], DKNN is more

hardware-friendly because it maintains a fixed-size data set,

and only requires little additional logic for data replacement.

Finally, the effectiveness of DKNN is validated using two

benchmark circuits, L2B (the L2 cache bank controller of

the OpenSPARC T2 processor [21]) and c7552 (an ISCAS

benchmark circuit [22]), details of which will be elaborated

upon in Section IV.

This work has two main contributions:

• DKNN copes with non-stationary distributed data by

updating the classifier incrementally using online data.

• DKNN can be implemented on chip for improving diag-

nostic accuracy, using little additional logic and a fixed-size

data set.

The rest of this paper is organized as follows. Section II

provides details of the DKNN algorithm and demonstrates

how it improves the accuracy of on-chip diagnosis. Section III

presents the on-chip implementation of DKNN while Section

IV evaluates the performance using the benchmark circuits

and the UCI repository databases [23]. Section V draws

conclusions.

II. METHODOLOGY

The flow for improving the accuracy of on-chip diagnosis is

depicted in Figure 1. On-chip test/diagnosis generates a coarse

diagnosis result which is then refined, if necessary, by the

DKNN classifier.

A. Module-level Diagnosis

For the purpose of on-chip test/diagnosis, the core/uncore to

be tested is partitioned into a set of interconnected modules,

1 If the probability that a fault is located in a specific module changes over
time, then the fault distribution is non-stationary; otherwise, it is stationary.

Figure 1: An on-chip diagnosis result is fed into the on-

chip DKNN classifier. The module predicted by the DKNN

classifier is repaired. If the predicted label proved to be

incorrect, the DKNN data set is updated.

Figure 2: A processor with four cores and several uncores is

shown hierarchically. Each core/uncore is partitioned into mul-

tiple modules, each of which is assumed to be independently

repairable. Within each module lies a number of faults (shown

as blue dots) that allow faulty modules to be distinguished via

testing [14].

each of which is independently repairable [14]. Figure 2 shows

a fictional multicore processor that contains four cores and

several uncores. Uncores are defined as system components

that are neither processor cores nor co-processors (e.g., mem-

ory controller, interrupt handlers, etc.) [13]. In Figure 2, each

core/uncore is partitioned into multiple modules, and particular

faults identified within each module capture those early-life

failure and wear-out locations that allow faulty modules to be

distinguished through diagnosis.

Periodic on-chip test/diagnosis starts with testing a

core/uncore using a method such as the CASP (Concurrent Au-

tonomous chip self-test using Stored test Patterns) technique

[12]. If the core/uncore is faulty, then diagnosis is initiated to

locate the faulty module. Specifically, diagnosis generates a list

of potentially-responsible delay faults on a per module basis

[14]. Further, counting the number of potentially-responsible

!

!

Authorized licensed use limited to: Zhejiang Tmall Technology Co.Ltd.. Downloaded on July 31,2021 at 04:40:49 UTC from IEEE Xplore.  Restrictions apply. 



delay faults for each module provides an indication of the

likelihood that the corresponding module is indeed the location

of failure. Predicting the faulty module to be the one with the

maximum fault-count is called “select-max”.

Table 1 shows three diagnosis results for L2B through

simulation. Each simulation first injects a delay fault (which

mimics early-life failure or wear-out) to a specific gate, and

then runs diagnosis that results in a fault-count associated with

each module. The first diagnosis result has ideal resolution,

i.e., only one module has non-zero fault-count. Thus, M9 is

most likely to be faulty. However, most diagnosis results do

not have ideal resolution. The second diagnosis result has three

modules associated with non-zero fault-counts, either of which

may be the faulty one. In this case, M5 is deemed to be

faulty using the select-max strategy. The third diagnosis result

has nine modules associated with non-zero fault-counts. The

select-max strategy would deem M7 as the faulty module but

the actual faulty module is M9.

The examples from Table 1 demonstrate that select-max is

not always correct. Based on the simulation results (described

in Section IV), the diagnostic accuracy of select-max is 71%

for L2B, and 20% for c7552. Here, a diagnostic outcome is

deemed accurate if the module with the maximum fault-count

is indeed the location of the failure. If select-max is incorrect

(i.e., the wrong repaired), the benefit of on-chip test/diagnosis

is hindered. Thus, improving diagnostic accuracy is a critical

goal of on-chip test/diagnosis.

B. Dynamic k-nearest-neighbor

k-nearest-neighbor (KNN) is an instance-based non-

parametric machine-learning algorithm used for classification.

Specifically, an unlabeled instance2 is classified based on

the class of its k nearest neighbors [24]. KNN classifica-

tion depends on the local-similarity nature of data, i.e., two

instances belonging to the same class are supposed to be

close to each other in the hyperspace that captures the data.

This assumption is also applicable to module-level diagnosis.

Figure 3 provides an example illustrating that failures in

different modules may result in different diagnosis results

based on how the modules are interconnected. For example,

Figure 3(a) shows two modules of a core/uncore, namely M1

and M2, that are connected to each other. The failure effects

stemming from M1 can propagate to M2, but the converse is

obviously not true. Thus, as shown in Figure 3(b), a failure

in M1 (red dots) may cause both M1 and M2 to report non-

zero fault-counts, but a failure in M2 (blue dots) cannot cause

M1 to report a non-zero fault-count. In this case, it is easy to

find the classification boundary in the two-dimensional space

between the faults residing in M1 and M2, which indicates that

the conventional KNN is capable of identifying the similarities

among faults residing in the same module.

DKNN is an incremental-learning algorithm [25]–[27] (Fig-

ure 4). An incremental classifier can evolve using new in-

stances without having to re-process past instances. It requires

2 A data instance is considered to be “labeled” if its class is known, otherwise
it is “unlabeled”.

Figure 3: (a) Two modules M1 and M2 are connected in an

core/uncore as shown. (b) A failure in M1 may cause both

M1 and M2 to report non-zero fault-counts (red dots), while

a failure in M2 cannot cause a non-zero fault-count for M1

as illustrated by the blue dots that lie along the y-axis.

Figure 4: The incremental learning scheme of DKNN. If the

predicted label is different from the actual label, then the

DKNN classifier is updated.

less data to build the initial classifier and consumes less

computational resources. In the DKNN algorithm, a new data

instance (i.e., a diagnosis result) is fed into the classifier,

resulting in a predicted label. After the actual label is known,

both the predicted label and the actual label are fed into the

replacement block for comparison. If the predicted label is

correct, the data set used by DKNN is left intact. Otherwise,

the nearest neighbor that is responsible for predicting the

wrong label is replaced with the instance. In other words,

the nearest neighbor whose label is the same as the instance

is replaced in case of wrong classification. By employing

replacement, the size of the data set is constrained to fit the

on-chip resources allocated for learning.

The replacement of data instances gradually revises the

composition of the data set so that it is more reflective of the

instances now being generated by the chip. For example, if the

distribution of the data changes, then the DKNN may make a

wrong prediction, but then it gradually adapts the distribution

of the DKNN data set by incorporating new data. In addition,

the replacement can refine the data set by removing noisy

data that has an adverse effect on classification. Specifically,

if a noisy data causes a wrong label, it is very likely to be

replaced. Moreover, although data replacement may cause the

classifier to overfit the faults appearing in a specific period of

time, the overfitting can be mitigated by dynamically updating

the data set, which is also an advantage of DKNN over the

conventional KNN.

!

!

Authorized licensed use limited to: Zhejiang Tmall Technology Co.Ltd.. Downloaded on July 31,2021 at 04:40:49 UTC from IEEE Xplore.  Restrictions apply. 



Faulty gate Faulty module M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

U6525 temp0 Y M9 0 0 0 0 0 0 0 0 2 0
U7423 temp1 Y M5 0 0 3 0 15 0 4 0 0 0

n11747 M9 77 21 32 34 63 0 83 4 57 11

Table 1: L2B, partitioned into ten modules, is diagnosed at the module level through simulation. The first step of simulation

is to inject a delay fault into a specific gate (the first column). The second step is to run on-chip diagnosis that results in a

fault-count associated with each module (the third column). The second column is the module that contains the faulty gate.

C. DKNN for Improving the Accuracy of On-chip Diagnosis

Algorithm 1 describes the use of DKNN for improving

the accuracy of on-chip diagnosis. The DKNN data set is

initialized using fault simulation data, i.e., injecting faults into

the gate-level netlist and then generating a fault-count for each

module using simulation tools.

A periodic test/diagnosis starts with testing a core/uncore.

Only if the test fails, then diagnosis is applied to identify

which module of the core/uncore is most likely the reason for

the observed test failure. The diagnosis result is reported as

a n-dimensional vector of integers, where n is the number of

modules. For each diagnosis result, a check for ideal resolution

(i.e., only one fault-count is non-zero) is performed. If the

resolution is ideal, then prediction via DKNN is obviously

not needed. If the resolution is non-ideal, then DKNN is

performed to predict which of the n modules is the faulty

one. Specifically, the module is labeled using the outcome

of a majority vote provided by its k nearest neighbors, and

then data replacement is performed if the predicted label is

incorrect. It is noted that only “relevant data” is considered

when the classifier is searching for nearest neighbors. For

example, in Table 1, the second diagnosis result has three

modules (i.e., M3, M5 and M7) associated with non-zero fault-

counts, and therefore only data instances whose labels are 3, 5,

or 7 are considered relevant. In addition, if a tie occurs during

majority vote (i.e., two or more modules contribute the same

number of neighbors), then either one module is selected as

the label.

When a module is predicted to be faulty, it will be repaired

and the system will be re-tested to determine if it was the

actual faulty module. If the system passes, then the prediction

is assumed to be correct; otherwise, the second-potentially

faulty module will be repaired. Test, diagnosis, and repair con-

tinue until the actual faulty module is identified. Finally, after

the actual faulty module is identified, the data replacement is

performed.

III. ARCHITECTURE

Figure 5 shows the block diagram for improving the accu-

racy of on-chip diagnosis. DKNN takes as input the diagnosis

result from the on-chip diagnosis scheme described in [14],

performs classification using the labeled data that is stored in

the on-chip buffer, and updates the data set if the classifica-

tion is later deemed to be incorrect. The architecture of the

KNN classifier is shown in Figure 6. The DKNN classifier

hardware employs an IP-core design proposed in [28]. The

fully pipelined KNN architecture shown in Figure 6 has m+k

Algorithm 1 DKNN for improving the accuracy of on-chip

diagnosis.

1: partition a core/uncore into n modules, i.e., M1,M2,...,Mn

2: initialize the data set S using simulation data

3: for each periodic test/diagnosis do
4: run on-chip test
5: if test passes then
6: wait until next test
7: else
8: run on-chip diagnosis
9: collect fault-counts, i.e., v = (c1, c2, ..., cn)

10: if v has only one non-zero fault-count then
11: lpred (i.e., predicted module) ← i, s.t. ci > 0
12: else
13: find k nearest neighbors of v from S, i.e.,

(v1, l1), ..., (vk, lk)
14: lpred ←majority vote of l1, ..., lk
15: (if a tie occurs, select either one)
16: repair module lpred and run on-chip test
17: lactl (i.e., actual faulty module) ← lpred
18: while test fails do
19: repair next potentially-faulty module lnext
20: run on-chip test
21: lactl ← lnext

22: if lpred 6= lactl then
23: for i← 1 to k do
24: if li = lpred then
25: replace (vi, li) with (v, lactl) in S
26: break

stages, where m is the number of features, and k is the number

of nearest neighbors. The white nodes compute the distances,

the dark gray nodes find the labels of the k nearest neighbors,

and the light gray nodes find the majority of the KNN labels

to be used for prediction. Assuming that the size of the data

set is n, the architecture can classify a new data instance in

n+m+ k clock cycles.

DKNN is described using Verilog and synthesized using

Synopsys Design Compiler [29]. The area, critical path, and

power are 45,305µm2, 5.3ns, and 700µW , respectively, for

the following parameter values: k =5, the number of features

is 16, and the size of data set is 200. In addition, the latency

of predicting the faulty module (∼1.3µs@166MHz) is much

smaller than that of on-chip test, diagnosis and repair [13],

[14], [16].

!

!

Authorized licensed use limited to: Zhejiang Tmall Technology Co.Ltd.. Downloaded on July 31,2021 at 04:40:49 UTC from IEEE Xplore.  Restrictions apply. 



Figure 5: A DKNN classifier is used to improve accuracy of

on-chip diagnosis. The block diagram shows the communica-

tion of data between various blocks within the system.

Figure 6: A pipelined architecture for KNN from [28]. The

architecture classifies a data instance in n+m+k clock cycles,

where n is the size of the data set, m is the number of features,

and k is the number of nearest neighbors. In this case, n =5,

m =4 and k =3.

IV. EXPERIMENT

To validate the effectiveness of DKNN, two benchmark

circuits, namely L2B [21] and c7552 [22], are used for simula-

tion. L2B is the L2 cache bank controller of the OpenSPARC

T2 processor, which is partitioned into 10 modules, and c7552

is one of the ISCAS benchmark circuits, which is partitioned

into 12 modules.

The benchmark circuits, with delay faults injected into them,

are tested/diagnosed, and then the faulty module is predicted

using DKNN. The conventional KNN and select-max are also

performed to the benchmark circuits for comparison. Table 2

shows the accuracy which is defined as the probability that the

predicted module is actually faulty under the assumption that

a single module is faulty. The result demonstrates that DKNN

Bench-

mark
circuits

No. of

injected
faults

Fault

distribution

Select-

max

Conven-

tional
KNN

DKNN

L2B 997
stationary 71% 79% 83%

non-stationary 71% 51% 82%

c7552 2,694
stationary 21% 44% 46%

non-stationary 21% 38% 46%

Table 2: The diagnostic accuracies for select-max, the conven-

tional KNN, and DKNN are compared using the benchmark

circuits L2B and c7552.

performs better than both the conventional KNN and select-

max. Compared to select-max, DKNN improves the accuracy

from 71% to 83% for L2B, and from 21% to 46% for c7552.

After all injected faults are classified by DKNN, the amount

of data replacement is 165 for L2B, and 1,212 for c7552,

representing 16.5% and 45.0% of the initial data sets for the

two benchmark circuits, respectively.

To simulate non-stationary fault distribution, we assume

that the DKNN data set is initially constructed without any

faults from M9 and M10, but the DKNN classifier has to deal

with the faults from M9 and M10 later in time. The result

demonstrates that the DKNN is able to maintain high accuracy

because it can dynamically incorporate new diagnosis data

from M9 and M10. However, the conventional KNN performs

even worse than select-max because it cannot predict any fault

from M9 and M10 (Table 2).

Figure 7(a) shows the overall diagnostic accuracy of DKNN

versus the size of the DKNN data set. The accuracy is

improved as the size of the DKNN data set increases. However,

the accuracy saturates if the size is larger than 200. Figure

7(b) shows the overall diagnostic accuracy of DKNN versus

k (i.e., the number of nearest neighbors). It shows that the

highest overall accuracy is achieved when k =5. Thus, 200 is

selected as the size of the DKNN data set, and 5 is selected

as the value of k for KNN classification.

Finally, the performance of DKNN, as a generic machine-

learning algorithm, is evaluated. Specifically, the accuracy

of DKNN is compared with the conventional KNN and the

incremental KNN algorithm proposed in [20], using seven

data sets from the UCI repository databases [23]. These data

sets are commonly used for verifying the performance of

classifiers. The classification results demonstrate that DKNN

performs slightly better than both the conventional KNN and

the incremental KNN in [20] (Figure 8).

V. CONCLUSION

In this paper, we have developed a dynamic k-nearest-

neighbor (DKNN) algorithm for improving the accuracy of on-

chip, module-level diagnosis. Different from the conventional

KNN, DKNN described here employs online data to update

the learned classifier dynamically, so that the learned classifier

can evolve as new data becomes available. Specifically, if the

classification for a data instance is proved to be wrong, the

nearest neighbor that is responsible for predicting the wrong

label is replaced by the data instance itself. When used to

!

!

Authorized licensed use limited to: Zhejiang Tmall Technology Co.Ltd.. Downloaded on July 31,2021 at 04:40:49 UTC from IEEE Xplore.  Restrictions apply. 



0 100 200 300 400
0.3

0.4

0.5

0.6

0.7

0.8

0.9

Size of DKNN data set

O
v

er
al

l 
ac

cu
ra

cy

(a)

0 5 10
0.7

0.72

0.74

0.76

0.78

0.8

Number of nearest neighbors

(b)
O

v
er

al
l 

ac
cu

ra
cy

Figure 7: (a) The diagnostic accuracy of DKNN is improved

as the size of the DKNN data set increases given k =5. (b) The

diagnostic accuracy of the DKNN varies for different values

of k (i.e., the number of nearest neighbors) given the size of

the DKNN data set is 200.

!∀!!#∃

%!∀!!#∃

&!∀!!#∃

∋!∀!!#∃

(!∀!!#∃

)!!∀!!#∃

∗+
,+
−.
/∃

0+
−.
/1
∃

2−
34
+−
5∃

26
−6
57
8/ 214

5∃

94
:/
1∃

;6
−+
1∃

<
4−
/∃

06−:/−=6−+,∃>??∃ ≅>??∃ 2−.1/Α/−Β+,∃>??∃4−∃Χ(∆∃

Figure 8: The performance of the conventional KNN, DKNN,

and the incremental KNN in [20] are compared using seven

randomly selected datasets from the UCI repository databases.

10-fold cross-validation is used, and size of data set is 200.

improve the accuracy of on-chip diagnosis, the experiments

demonstrate that DKNN significantly improves the accuracy

for benchmark circuits, L2B and c7552. DKNN can achieve

acceptable accuracy with limited memory, or in case of non-

stationary fault distribution, which makes it suitable for on-

chip use. Finally, experiments using the UCI repository [23]

show that DKNN performs as well or better than conventional

KNN and another incremental KNN algorithm [20].

REFERENCES

[1] S. Borkar, “Designing Reliable Systems from Unreliable Components:
the Challenges of Transistor Variability and Degradation,” in Micro,
2005.

[2] T. Mak, “Infant Mortality-The Lesser Known Reliability Issue,” in
International On-Line Testing Symposium, 2007.

[3] Y. M. Kim, Y. Kameda, H. Kim, M. Mizuno, and S. Mitra, “Low-
cost Gate-oxide Early-life Failure Detection in Robust Systems,” in
Symposium on VLSI Circuits, 2010.

[4] N. C. Laurenciu, Y. Wang, and S. D. Cotofana, “A Direct Measurement
Scheme of Amalgamated Aging Effects with Novel On-chip Sensor,” in
International Conference on Very Large Scale Integration, 2013.

[5] S. Mitra, N. Seifert, M. Zhang, Q. Shi, and K. S. Kim, “Built-in Soft-
error Resilience for Robust System Design,” in Integrated Circuit Design

and Technology, 2005.

[6] M. Zhang, S. Mitra, S. Member, T. M. Mak, N. Seifert, N. J. Wang,
Q. Shi, K. S. Kim, N. R. Shanbhag, and S. J. Patel, “Sequential Element
Design with Built-in Soft Error Resilience,” Very Large Scale Integration

(VLSI) Systems, vol. 14, no. 12, pp. 1368–1378, 2006.

[7] S. Shamshiri, A. Rani, K. Cheng, and S. Barbara, “End-to-End Error
Correction and Online Diagnosis for On-Chip Networks,” in Interna-

tional Test Conference, 2011.
[8] D. Gizopoulos, M. Psarakis, S. V. Adve, P. Ramachandran, S. K. S.

Hari, D. Sorin, A. Meixner, A. Biswas, and X. Vera, “Architectures
for Online Error Detection and Recovery in Multicore Processors,” in
Design, Automation and Test in Europe, 2011.

[9] A. Ghofrani, R. Parikh, S. Shamshiri, A. Deorio, K. Cheng, and
V. Bertacco, “Comprehensive Online Defect Diagnosis in On-Chip
Networks,” in VLSI Test Symposium, 2012.

[10] Y. Li, Y. M. Kim, E. Mintarno, D. Gardner, and S. Mitra, “Overcoming
Early-life Failure and Aging for Robust Systems,” in Design and Test

of Computers, 2009.
[11] M. Agarwal, B. C. Paul, M. Zhang, and S. Mitra, “Circuit Failure

Prediction and Its Application to Transistor Aging,” in VLSI Test

Symposium, 2007.
[12] Y. Li, S. Makar, and S. Mitra, “CASP: Concurrent Autonomous Chip

Self-Test Using Stored Test Patterns,” in Design, Automation and Test

in Europe, 2008.
[13] Y. Li, D. S. Gardner, O. Mutlu, and S. Mitra, “Concurrent Autonomous

Self-Test for Uncore Components in System-on-Chips,” in VLSI Test

Symposium, 2010.
[14] M. Beckler and S. Blanton, “On-chip Diagnosis for Early-life and Wear-

out Failures,” in International Test Conference, 2012.
[15] D. Lazarevski, “VLSI Fault Diagnosis Problems and Decisions,” in

ARSA-Advanced Research in Scientific Areas, 2012.
[16] Y. Li, E. Cheng, S. Makar, and S. Mitra, “Self-repair of Uncore

Components in Robust System-on-Chips: An OpenSPARC T2 Case
Study,” in International Test Conference, 2013.

[17] K. Huang, H.-G. Stratigopoulos, S. Mir, C. Hora, Y. Xing, and B. Kruse-
man, “Diagnosis of Local Spot Defects in Analog Circuits,” Instrumen-

tation and Measurement, IEEE Transactions on, vol. 61, no. 10, pp.
2701–2712, 2012.

[18] C. Yang, S. Tian, Z. Liu, J. Huang, and F. Chen, “Fault Modeling on
Complex Plane and Tolerance Handling Methods for Analog Circuits,”
Instrumentation and Measurement, IEEE Transactions on, vol. 62,
no. 10, pp. 2730–2738, 2013.

[19] M. A. El-Gamal, A.-K. S. Hassan, and A. A. Ibrahim, “Analog Fault Di-
agnosis Using Conic Optimization and Ellipsoidal Classifiers,” Journal

of Electronic Testing, vol. 30, no. 4, pp. 443–455, 2014.
[20] K. Forster, S. Monteleone, A. Calatroni, D. Roggen, and G. Troster, “In-

cremental k-NN Classifier Exploiting Correct-Error Teacher for Activity
Recognition,” in Machine Learning and Applications, 2010.

[21] “OpenSPARC T2,” http://www.oracle.com/technetwork/systems
/opensparc/opensparc-t2-page-1446157.html, Oracle.

[22] “ISCAS Benchmarks,” http://web.eecs.umich.edu/ jhayes/iscas.restore/.
[23] “UC Irvine Machine Learning Repository,” http://archive.ics.uci.edu/ml/,

University of California, Irvine.
[24] L. Kozma, “K Nearest Neighbors Algorithm (kNN),” Tech. Rep., 2008.
[25] R. Polikar, L. Udpa, S. Member, S. S. Udpa, and V. Honavar, “Learn++

: An Incremental Learning Algorithm for Supervised Neural Networks,”
Systems, Man, and Cybernetics, vol. 31, no. 4, pp. 497–508, 2001.

[26] G. Cauwenberghs and T. Poggio, “Incremental and Decremental Support
Vector Machine Learning,” in Advances in Neural Information Process-

ing Systems, 2001.
[27] R. Elwell, R. Polikar, and S. Member, “Incremental Learning of Concept

Drift in Nonstationary Environments,” Neural Networks, vol. 22, no. 10,
pp. 1517–1531, 2011.

[28] E. S. Manolakos and I. Stamoulias, “IP-cores Design for the kNN
Classifier,” in International Symposium on Circuits and Systems, 2010.

[29] “Design Compiler,” http://www.synopsys.com/Tools/Implementation/
RTLSynthesis/DesignCompiler/Pages/default.aspx, Synopsys.

!

!

Authorized licensed use limited to: Zhejiang Tmall Technology Co.Ltd.. Downloaded on July 31,2021 at 04:40:49 UTC from IEEE Xplore.  Restrictions apply. 


